. 24/7 Space News .
TECH SPACE
NIST 'noise thermometry' yields accurate new measurements of boltzmann constant
by Staff Writers
Washington DC (SPX) Jul 03, 2017


This quantum voltage noise source (QVNS) provides a fundamentally accurate voltage signal that can be compared to the voltage noise from electrons in a resistor. Measuring the voltage noise enabled researchers to determine the Boltzmann constant, which relates an energy of a system to its temperature. Credit Dan Schmidt/NIST

By measuring the random jiggling motion of electrons in a resistor, researchers at the National Institute of Standards and Technology (NIST) have contributed to accurate new measurements of the Boltzmann constant, a fundamental scientific value that relates the energy of a system to its temperature. NIST made one measurement in its Boulder, Colorado, laboratory and collaborated on another in China.

These results will contribute to a worldwide effort to redefine the kelvin, the international unit of temperature, and could lead to better thermometers for industry.

Accurate temperature measurement is critical to any manufacturing process that requires specific temperatures, such as steel production. It's also important for nuclear power reactors, which require precise thermometers that are not destroyed by radiation and do not need to be regularly replaced by human workers.

"We live with temperature every day," said Samuel Benz, group leader of the NIST research team involved with the new results. "The current measurements that define the kelvin are 100 times less accurate than measurements defining the units for mass and electricity." The kilogram is known to parts per billion, while the kelvin is only known to a part in a million.

In late 2018, representatives from nations around the world are expected to vote on whether to redefine the international system of units, known as the SI, at the General Conference on Weights and Measures in France. When implemented in 2019, the new SI would no longer rely upon physical objects or substances to define measurement units. Instead, the new SI would be based on constants of nature such as the Boltzmann constant, which depends fundamentally on quantum mechanics, the theory that describes matter and energy at the atomic scale.

To define the kelvin, scientists currently measure the triple point of water in a sealed glass cell. The triple point is the temperature at which water, ice and water vapor exist in equilibrium. This corresponds to 273.16 kelvins (0.01 degrees Celsius or 32.0 degrees Fahrenheit). The kelvin is defined as 1/273.16 of the measured temperature value.

This method has drawbacks. For example, chemical impurities in the water can slowly lower the cell's temperature over time. Researchers must also make corrections due to the presence of different isotopes of water (i.e., having the same number of protons but different numbers of neutrons). And measurements at temperatures higher or lower than the triple point of water are inherently less precise.

"By defining the kelvin in terms of the Boltzmann constant, you don't have to have these variations in uncertainty, and you can use quantum-mechanical effects," said Nathan Flowers-Jacobs, lead author of the paper on the new NIST measurement, accepted for publication in the journal Metrologia.

For the Boltzmann constant to be good enough to redefine the kelvin, there are two requirements established by the international group in charge of the issue, known as the Consultative Committee on Thermometry of the International Committee for Weights and Measures. There must be one experimental value with a relative uncertainty below 1 part per million - and at least one measurement from a second technique with a relative uncertainty below 3 parts per million.

So researchers have been pursuing a variety of methods for measuring the Boltzmann constant. The most accurate method remains measurements of the acoustical properties of a gas. A 1988 NIST result yielded a value known to better than 2 parts per million, and more recent measurements have achieved less than 1 part per million. Scientists around the world have devised a variety of other techniques, including ones that measure other properties of gases.

"It's important to do this measurement with multiple methods that are completely different," said Benz. "It's also important that for each method you do multiple measurements."

A completely different approach is a technique that does not rely on ordinary gases but instead mainly on electrical measurements. The technique measures the degree of random motion - "noise" - of electrons in a resistor. This "Johnson noise" is directly proportional to the temperature of electrons in the resistor - and the Boltzmann constant.

Past measurements of Johnson noise were plagued by the problem of measuring tiny voltages with parts-per-million accuracy; this problem is exacerbated by the Johnson noise of the measurement equipment itself.

To address this issue, the NIST researchers in 1999 developed a "quantum voltage noise source" (QVNS) as a voltage reference for Johnson Noise Thermometry (JNT). The QVNS uses a superconducting device known as a Josephson junction to provide a voltage signal that is fundamentally accurate, as its properties are based on the principles of quantum mechanics.

The researchers compare the QVNS signal to the voltage noise created by the random motions of electrons in the resistor. In this way, the researchers can accurately measure Johnson noise - and the Boltzmann constant.

In 2011, the group began publishing Boltzmann constant measurements with this technique and has made improvements since then. Compared to the 2011 measurements, the new NIST results are 2.5 times more accurate, with a relative uncertainty of approximately 5 parts per million.

According to Flowers-Jacobs, the improvement came from better shielding of the experimental area from stray electrical noise and upgrades to the electronics. The researchers performed careful "cross-correlation" analysis in which they made two sets of measurements each of the Johnson noise and the quantum voltage noise source to reject other noise sources from the measurement. Other factors included increasing the size of the resistor for a larger source of Johnson noise and better shielding between the different measurement channels for the two sets of measurements.

NIST also contributed expertise as well as a quantum voltage noise source to a new Boltzmann measurement at the National Institute of Metrology in China. Thanks in part to excellent isolation from noise sources, this measurement has a relative uncertainty of 2.8 parts per million, satisfying the second requirement for a redefined kelvin. This new result has also been accepted for publication in Metrologia.

"It's been a very collaborative, international effort," Benz said. Germany has also begun an effort to develop Johnson noise thermometry for disseminating a primary standard for thermometry.

"All the data will be included" in determining a new Boltzmann constant value, said Horst Rogalla, leader of the NIST Johnson Noise Thermometry Project. "The important point is the condition for redefining the kelvin has been fulfilled."

Beyond the new SI, devices based on Johnson thermometry have potential for being used directly in industry, including in nuclear reactors. "At the moment, we are using it to define the kelvin, but afterwards, we will use it as an excellent thermometer," Rogalla said.

N.E. Flowers-Jacobs, A. Pollarolo, K.J. Coakley, A.E. Fox, H. Rogalla, W. Tew and S. Benz, A Boltzmann constant determination based on Johnson noise thermometry. Metrologia. Accepted manuscript posted online 23 June 2017; and J. Qu, S. Benz, K. Coakley, H. Rogalla, W. Tew, D. White, K. Zhou and Z. Zhou, An improved electronic determination of the Boltzmann constant by Johnson noise thermometry. Metrologia. Accepted manuscript posted online 8 June 2017.

TECH SPACE
Scientists find 3,000-year-old cloth, earliest evidence of chemical dyeing
Washington (UPI) Jun 29, 2017
Archaeologists have recovered the earliest evidence of plant-based textile dyeing. The evidence is a 3,000-year-old piece of cloth found in Israel's Arava desert. Researchers say the record-setting wool and linen fragments offer insights into the textile industry that supported a highly hierarchical society in Israel's Timna Valley during between the 13th and 10th centuries BC. " ... read more

Related Links
National Institute of Standards and Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Statement on National Space Council

Don't look down: glass bottom skywalk thrills in China

Silicon-on-Seine: world's biggest tech incubator opens in Paris

India, Portugal Shake Hands on Space Cooperation

TECH SPACE
After two delays, SpaceX launches broadband satellite for IntelSat

Aerojet Rocketdyne advocates solar electric propulsion as central element of deep space exploration

Ariane 5 launch proves reliability and flies new fairing

80th consecutive success for Ariane 5 with launch of Hellas Sat, Inmarsat and ISRO

TECH SPACE
Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

No One Under 20 Has Experienced a Day Without NASA at Mars

TECH SPACE
China heavy-lift carrier rocket launch fails: state media

Yuanwang-3 completes ship check mission, ready for Chang'e-5 lunar probe launch

China prepares to launch second heavy-lift carrier rocket

China to launch Long March-5 Y2 in early July

TECH SPACE
SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

Second launch doubles number of Iridium NEXT satellites in orbit to 20

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

TECH SPACE
NIST 'noise thermometry' yields accurate new measurements of boltzmann constant

SES and MDA Announce First Satellite Life Extension Agreement

Space Debris Mitigation Mission Successfully Launched on June 23rd, 2017

True romance in the air at Tokyo virtual reality show

TECH SPACE
Extreme Atmosphere Stripping May Limit Exoplanets' Habitability

Complex Organic Molecules Found On "Space Hamburger"

Why Does Microorganism Prefer Meager Rations Over Rich Ones

NASA diligently tracks microbes inside the International Space Station

TECH SPACE
Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby

NASA's Juno Spacecraft to Fly Over Jupiter's Great Red Spot July 10

Topsy-Turvy Motion Creates Light-Switch Effect at Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.