. | . |
NESSI comes to life at Palomar Observatory by Staff Writers Pasadena CA (JPL) Jan 26, 2020
Before astronomers use a new tool or technology, they must test every aspect of it to make sure it is ready to turn starlight into tantalizing information about the cosmos. On Feb. 2, 2018, a handful of researchers began testing an instrument called the New Mexico Exoplanet Spectroscopic Survey Instrument, or NESSI, at the historic 200-inch Hale Telescope at Palomar Observatory in Southern California. NESSI is designed to look at the atmospheres of exoplanets, or planets beyond our solar system. Here's what that first night of testing was like: 4:00 p.m. The NESSI team united for an early dinner at the dormitory called "the monastery" before driving to the telescope. Principal investigator Michelle Creech-Eakman, who grew up under the clear skies of North Dakota, has spent hundreds of nights at Palomar, so she's familiar with the overnight-astronomy lifestyle. Working there as a Caltech postdoctoral researcher, she once accidentally scared a herd of cows in her quests to tame the mysteries of stars and planets. 5:20 p.m. Sunset. The telescope dome, with proportions similar to Rome's Pantheon, opened, synchronized with the theme from "2001: A Space Odyssey," which Rob Zellem, an astrophysicist at NASA's Jet Propulsion Laboratory, jokingly played on his phone. Afterward, he climbed up to the outdoor catwalk to admire the fiery sky for a few minutes. 5:36 p.m. The team convened in the observing room, adjacent to the dome, taking images called "sky flats" to calibrate NESSI using the light of the sky itself. This is so the team can understand how each pixel of NESSI's detector responds to incoming light. If astronomers spot inconsistencies from pixel to pixel, they can adjust for them and subtract out "noise" when making real observations. Around 5:49 p.m. NESSI's detectors were exposed to the sky at Palomar for the first time. To the untrained eye it looked like black-and-white static with lines through it on an old TV. Around 6:10 p.m. NESSI saw its first star, Alpha Perseus. A round of applause resounded in the observation room. Zellem's excitement was palpable. "It's one thing to see it in a lab; it's another to see a real star," he said. But the team was just getting started. NESSI's many components needed to be calibrated and examined - so many that Creech-Eakman didn't expect to get actual data from a star tonight. Zellem opened a bag of turkey jerky for the long night ahead. NESSI at first delivered a strange pattern of pixels on Zellem's computer screen. The researchers examined a star called Eta Aurigae to compare its appearance to Alpha Perseus in NESSI's field of view and tried to figure out whether the changes in brightness were due to NESSI's detector or to the thin clouds rolling in. 8:50 p.m. The team got an error message when they tried to get a stellar spectrum, the array of lines corresponding to different wavelengths of light a star produces. When they took the image again, it worked - but not as expected. With clouds coming in and out of view, getting a clear image would prove difficult. The troubleshooting continued through the next hour. "I think we're missing something fundamental," Creech-Eakman said. Just before 11 p.m. Creech-Eakman and Zellem decided on a new target: a star called Capella. It's here they realized that the star needed to be in a different part of NESSI's field of view. With a 10-second exposure, they were at last able to see part of a spectrum. And as they adjusted the positioning of the star with respect to NESSI, the full spectrum came into view. The team exploded in applause. Around 2 a.m. Because of clouds, they stopped and ceded the rest of the time to another group of astronomers. By then, the NESSI team had noted a variety of unexpected behavior from the instrument that they would need to investigate in the light of day. As with all new technologies, NESSI presented its researchers with challenges that had no immediate solutions, and there's no manual to follow or help line to call. But the evening was a tremendous success in taking stock of NESSI's components and functions. After an additional year-and-a-half of tweaking, testing and observing, NESSI observed its first exoplanet signatures on Sept. 11, 2019, proving its readiness for further studies. Between the picturesque mountaintop setting and the engineering marvel of the "Big Eye" Hale Telescope itself, Creech-Eakman doesn't mind making more trips to Palomar Observatory. It's been a special place for her since her Caltech days, when she worked there on someone else's experiment. "My father had a small telescope that he had built, and I got to use that when I was little. He had made the mirrors himself - all of it," she said. "To bring my own instrument to a place like this is - I really don't have words."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |