. 24/7 Space News .
STELLAR CHEMISTRY
NASA's Webb telescope's cool view on how stars, planets form
by Thaddeus Cesari for Webb News
Baltimore MD (SPX) Apr 08, 2022

Eagle Nebula's Pillars of Creation seen in near-infrared - Hubble file image

The ongoing success of the multi-instrument optics alignment for NASA's Webb telescope's near-infrared instruments has moved the attention of the commissioning team to chill as we carefully monitor the cooling of the Mid-InfraRed Instrument (MIRI) down to its final operating temperature of less than 7 kelvins (-447 degrees Fahrenheit, or -266 degrees Celsius). We are continuing other activities during this slow cooldown which include monitoring the near-infrared instruments. As MIRI cools, other major components of the observatory, such as the backplane and mirrors, also continue to cool and are approaching their operational temperatures.

Last week, the Webb team did a station-keeping thruster burn to maintain Webb's position in orbit around the second Lagrange point. This was the second burn since Webb's arrival at its final orbit in January; these burns will continue periodically throughout the lifetime of the mission.

In the last few weeks, we have been sharing some of Webb's anticipated science, beginning with the study of the first stars and galaxies in the early universe. Today, we will see how Webb will peer within our own Milky Way galaxy at places where stars and planets form. Klaus Pontoppidan, the Space Telescope Science Institute project scientist for Webb, shares the cool science planned for star and planet formation with Webb:

"In the first year of science operations, we expect Webb to write entirely new chapters in the history of our origins - the formation of stars and planets. It is the study of star and planet formation with Webb that allows us to connect observations of mature exoplanets to their birth environments, and our solar system to its own origins. Webb's infrared capabilities are ideal for revealing how stars and planets form for three reasons: Infrared light is great at seeing through obscuring dust, it picks up the heat signatures of young stars and planets, and it reveals the presence of important chemical compounds, such as water and organic chemistry.

"Let us look at each reason in more detail. We often hear that infrared light passes through obscuring dust, revealing newborn stars and planets that are still embedded in their parental clouds. In fact, mid-infrared light, as seen by MIRI, can pass through 20 times thicker clouds than visible light. Because young stars are formed quickly (by cosmic standards, anyway) - in as little as a few 100,000 years - their natal clouds have not had time to disperse, hiding what is going on in this critical stage from visible view. Webb's infrared sensitivity allows us to understand what happens at these very first stages, as gas and dust are actively collapsing to form new stars.

"The second reason has to do with the young stars and giant planets themselves. Both begin their lives as large, puffy structures that contract over time. While young stars tend to get hotter as they mature, and giant planets cool, both typically emit more light in the infrared than at visible wavelengths. That means that Webb is great at detecting new young stars and planets and can help us understand the physics of their earliest evolution. Previous infrared observatories, like the Spitzer Space Telescope, used similar techniques for the nearest star-forming clusters, but Webb will discover new young stars across the galaxy, the Magellanic Clouds, and beyond.

"Finally, the infrared range (sometimes called the "molecular fingerprint region") is ideal for identifying the presence of a range of chemicals, in particular water and various organics. All four of Webb's science instruments can detect various important molecules using their spectroscopic modes. They are particularly sensitive to molecular ices present in cold molecular clouds before stars are formed, and NIRCam and NIRSpec will, for the first time, comprehensively map the spatial distribution of ices to help us understand their chemistry. MIRI will also observe warm molecular gas near many young stars where rocky, potentially habitable planets may be forming. These observations will be sensitive to most bulk molecules and will allow us to develop a chemical census at the earliest stages of planet formation. It is no surprise that a significant number of Webb's early scientific investigations aim to measure how planetary systems build the molecules that may be important for the emergence of life as we know it.

"We will be keeping a close eye on MIRI as it cools down. As the only mid-infrared instrument on Webb, MIRI will be particularly important for understanding the origins of stars and planets."

The ongoing success of the multi-instrument optics alignment for NASA's Webb telescope's near-infrared instruments has moved the attention of the commissioning team to chill as we carefully monitor the cooling of the Mid-InfraRed Instrument (MIRI) down to its final operating temperature of less than 7 kelvins (-447 degrees Fahrenheit, or -266 degrees Celsius). We are continuing other activities during this slow cooldown which include monitoring the near-infrared instruments. As MIRI cools, other major components of the observatory, such as the backplane and mirrors, also continue to cool and are approaching their operational temperatures.

Last week, the Webb team did a station-keeping thruster burn to maintain Webb's position in orbit around the second Lagrange point. This was the second burn since Webb's arrival at its final orbit in January; these burns will continue periodically throughout the lifetime of the mission.

In the last few weeks, we have been sharing some of Webb's anticipated science, beginning with the study of the first stars and galaxies in the early universe. Today, we will see how Webb will peer within our own Milky Way galaxy at places where stars and planets form. Klaus Pontoppidan, the Space Telescope Science Institute project scientist for Webb, shares the cool science planned for star and planet formation with Webb:

"In the first year of science operations, we expect Webb to write entirely new chapters in the history of our origins - the formation of stars and planets. It is the study of star and planet formation with Webb that allows us to connect observations of mature exoplanets to their birth environments, and our solar system to its own origins. Webb's infrared capabilities are ideal for revealing how stars and planets form for three reasons: Infrared light is great at seeing through obscuring dust, it picks up the heat signatures of young stars and planets, and it reveals the presence of important chemical compounds, such as water and organic chemistry.

"Let us look at each reason in more detail. We often hear that infrared light passes through obscuring dust, revealing newborn stars and planets that are still embedded in their parental clouds. In fact, mid-infrared light, as seen by MIRI, can pass through 20 times thicker clouds than visible light. Because young stars are formed quickly (by cosmic standards, anyway) - in as little as a few 100,000 years - their natal clouds have not had time to disperse, hiding what is going on in this critical stage from visible view. Webb's infrared sensitivity allows us to understand what happens at these very first stages, as gas and dust are actively collapsing to form new stars.

Hubble Space Telescope images in the optical (top) and near-infrared (bottom) of the Eagle Nebula's Pillars of Creation. These images show how infrared light can peer through obscuring dust and gas and reveal star and planet formation within these giant galactic stellar nurseries. Credit: NASA, ESA/Hubble and the Hubble Heritage Team.

"The second reason has to do with the young stars and giant planets themselves. Both begin their lives as large, puffy structures that contract over time. While young stars tend to get hotter as they mature, and giant planets cool, both typically emit more light in the infrared than at visible wavelengths. That means that Webb is great at detecting new young stars and planets and can help us understand the physics of their earliest evolution. Previous infrared observatories, like the Spitzer Space Telescope, used similar techniques for the nearest star-forming clusters, but Webb will discover new young stars across the galaxy, the Magellanic Clouds, and beyond.

"Finally, the infrared range (sometimes called the "molecular fingerprint region") is ideal for identifying the presence of a range of chemicals, in particular water and various organics. All four of Webb's science instruments can detect various important molecules using their spectroscopic modes. They are particularly sensitive to molecular ices present in cold molecular clouds before stars are formed, and NIRCam and NIRSpec will, for the first time, comprehensively map the spatial distribution of ices to help us understand their chemistry. MIRI will also observe warm molecular gas near many young stars where rocky, potentially habitable planets may be forming. These observations will be sensitive to most bulk molecules and will allow us to develop a chemical census at the earliest stages of planet formation. It is no surprise that a significant number of Webb's early scientific investigations aim to measure how planetary systems build the molecules that may be important for the emergence of life as we know it.

"We will be keeping a close eye on MIRI as it cools down. As the only mid-infrared instrument on Webb, MIRI will be particularly important for understanding the origins of stars and planets."

Simulated MIRI spectrum of a protoplanetary disk, as it might appear in a number of Cycle 1 science programs. The spectrum shows many features that demonstrate the presence of water, methane, and many other chemicals. Credit: NASA, STScI.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Webb's mid-infrared instrument cooldown continues
Baltimore MD (SPX) Apr 07, 2022
"The Mid-Infrared Instrument (MIRI) and other Webb instruments have been cooling by radiating their thermal energy into the dark of space for the bulk of the last three months. The near-infrared instruments will operate at about 34 to 39 kelvins, cooling passively. But MIRI's detectors will need to get a lot colder still, to be able to detect longer wavelength photons. This is where the MIRI cryocooler comes in. "Over the last couple weeks, the cryocooler has been circulating cold helium gas past ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
UCF part of historic civilian space flight to ISS

Space tourism: the arguments in favor

Arctic simulation of Moon-like habitat shows wellbeing sessions keep you sane

Brazilian Space Chief Says Nations Should Think Long-Term, Keep Space Out of Geopolitics

STELLAR CHEMISTRY
ISRO likely to launch seven satellites during current year: Govt

NASA working around valve issue to complete testing of Artemis

First all-private mission docks with ISS

Arianespace wins new contract to launch Sentinel-1C observation satellite on board Vega-C

STELLAR CHEMISTRY
NASA's Pioneering Ingenuity Mars Helicopter Awarded Collier Trophy

NASA's Curiosity Mars rover reroutes away from 'Gator-Back' rocks

Citizen scientists help map ridge networks on Mars

Sol 3436: Motion Accomplished

STELLAR CHEMISTRY
Tianzhou 2 re-enters Earth's atmosphere, mostly burns up

Shenzhou XIII astronauts prep for return

China's Tianzhou-2 cargo craft leaves space station core module

China's space station to support large-scale scientific research

STELLAR CHEMISTRY
US, Russia Should Cooperate on Leveraging Private Investment for Space Programs - Expert

The race to dominate satellite internet heats up

HawkEye 360 launches next-generation Cluster 4 satellites

Kleos launches Patrol Mission satellites

STELLAR CHEMISTRY
L3Harris awarded $117M space object-tracking modernization contract

3D-printed bone

Lockheed Martin releases open-source interface standard for on-orbit docking

New cutting-edge thermoplastic materials for the aerospace sector

STELLAR CHEMISTRY
Hubble probes extreme weather on ultra-hot Jovian exoplanets

Kepler telescope delivers new planetary discovery from the grave

NASA simulator helps to shed light on mysteries of Solar System

A Beacon in the Galaxy: Updated Arecibo Message for Potential FAST and SETI Projects

STELLAR CHEMISTRY
A closer look at Jupiter's origin story

17-year Neptune study reveals surprising temperature changes

SwRI scientists connect the dots between Galilean moon, auroral emissions on Jupiter

Juice's journey and Jupiter system tour









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.