. 24/7 Space News .
STELLAR CHEMISTRY
NASA's Webb Telescope will have the coolest camera in space
by Staff Writers
Greenbelt MD (SPX) Dec 15, 2021

.

Set to launch on Dec. 22, NASA's James Webb Space Telescope is the largest space observatory in history, and it has an equally gargantuan task: to collect infrared light from the distant corners of the cosmos, enabling scientists to probe the structures and origins of our universe and our place in it.

Many cosmic objects - including stars and planets, as well as the gas and dust from where they form - emit infrared light, sometimes called heat radiation. But so do most other warm objects, like toasters, humans, and electronics. That means Webb's four infrared instruments can detect their own infrared glow.

To reduce those emissions, the instruments have to be really cold - about 40 kelvins, or minus 388 degrees Fahrenheit (minus 233 degrees Celsius). But to operate properly, the detectors inside the mid-infrared instrument, or MIRI, will have to get even colder: less than 7 kelvins (minus 448 degrees Fahrenheit, or minus 266 degrees Celsius).

That's just a few degrees above absolute zero (0 kelvins) - the coldest temperature theoretically possible, though it's never physically attainable because it represents the total absence of any heat. (MIRI is not, however, the coldest imaging instrument ever to operate in space.)

Temperature is essentially a measurement of how fast atoms are moving, and in addition to detecting their own infrared light, the Webb detectors can be trigged by their own thermal vibrations. MIRI detects light in a lower-energy range than the other three instruments. As a result, its detectors are even more sensitive to thermal vibrations. These unwanted signals are what astronomers refer to as "noise," and they can overwhelm the faint signals that Webb is trying to detect.

After launch, Webb will unfold a tennis-court-size sunshield that will block MIRI and the other instruments from the Sun's heat, allowing them to cool passively. Beginning about 77 days after launch, MIRI's cryocooler will spend 19 days lowering the temperature of the instrument's detectors to less than 7 kelvins.

"It's relatively easy to cool something down to that temperature on Earth, typically for scientific or industrial applications," said Konstantin Penanen, a cryocooler specialist at NASA's Jet Propulsion Laboratory in Southern California, which manages the MIRI instrument for NASA.

"But those Earth-based systems are very bulky and energy inefficient. For a space observatory, we need a cooler that is physically compact, highly energy efficient, and it has to be highly reliable because we can't go out and repair it. So those are the challenges we faced, and in that respect, I would say the MIRI cryocooler is certainly at the cutting edge."

One of Webb's big science goals will be to study the properties of the first generation of stars to form in the universe. Webb's Near-Infrared Camera, or NIRCam instrument, will be able to detect these extremely distant objects, and MIRI will help scientists confirm that these faint sources of light are clusters of first-generation stars, rather than second-generation stars that form later as a galaxy evolves.

By peering through even thicker clouds of dust than the near-infrared instruments, MIRI will reveal the birthplaces of stars. It will also detect molecules that are common on Earth - like water, carbon dioxide, and methane, and those of rocky minerals like silicates - in cool environments around nearby stars, where planets may form. Near-infrared instruments are better at detecting these molecules as vapor in much hotter environments, while MIRI can see them as ices.

"By combining expertise from both the United States and Europe, we have developed MIRI as a powerful capability for Webb that will enable astronomers from all over the world to answer big questions about how stars, planets, and galaxies form and evolve," said Gillian Wright, co-lead of the MIRI science team and the instrument's European principal investigator at the UK Astronomy Technology Centre (UK ATC).

The Big Chill
The MIRI cryocooler uses helium gas - enough to fill about nine party balloons - to carry heat away from the instrument's detectors. Two electrically powered compressors pump the helium through a tube that extends to where the detectors are located. The tube runs through a block of metal that is also attached to the detectors; the cooled helium absorbs excess heat from the metal block, which in turn keeps the detectors at their operational temperature below 7 kelvins. The warmed (but still quite cold) gas then returns to the compressors, where it dumps the excess heat, and the cycle begins again. Fundamentally, the system is similar to those used in home refrigerators and air conditioners.

The tubing that carries the helium is made of gold-coated stainless steel and measures less than one-tenth of an inch (2.5 millimeters) in diameter. It extends about 30 feet (10 meters) from the compressors, located in a region called the spacecraft bus, to MIRI's detectors, located in the Optical Telescope Element, behind the observatory's honeycomb-shaped primary mirror. Hardware called the Deployable Tower Assembly, or DTA, connects these two regions.

When packed for launch, the DTA is compressed, sort of like a piston, to help fit the stowed observatory into the protective faring that rides atop the rocket. Once in space, the tower will extend to separate the room-temperature spacecraft bus from the much colder Optical Telescope Instrument, and to allow the sunshield and telescope to fully deploy.

But the elongation process requires the helium tubing to extend along with the Deployable Tower Assembly. So the tube is coiled like a spring, which is why MIRI engineers nicknamed this portion of the tube the "Slinky."

"There were a couple of challenges working on a system that spans multiple regions of the observatory," said Analyn Schneider, MIRI's project manager at JPL. "Those different regions are led by different organizations or centers, including Northrop Grumman and NASA's Goddard Space Flight Center, and we had to interface with everybody. There's no other hardware on the telescope that requires that, so that was a challenge unique to MIRI. It's definitely been a long road for the MIRI cryocooler, and we're ready to see it perform in space."


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Webb telescope aims to answer astronomy's 'biggest questions'
Paris (AFP) Dec 10, 2021
It's been three decades in the making: the largest and most powerful telescope ever to be launched into space is finally ready to take up its orbit and beam back new clues to the origins of the Universe and Earth-like planets beyond our solar system. NASA's James Webb Space Telescope, named for a former director of the American space agency, follows in the footsteps of the legendary Hubble - but intends to show humans what the Universe looked like even closer to its birth nearly 14 billion years ag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space Habitat Market size to grow by USD 94.92 Bn

NASA selects second private astronaut mission to Space Station

Experiments riding 24th SpaceX Cargo Mission to USS included bioprinting, crystallization, laundry studies

Russia's cosmos town, an isolated relic of Soviet glory

STELLAR CHEMISTRY
Webb placed on top of Ariane 5

ESA contract to advance Vega-C competitiveness

NASA 'Fires Up' Artemis RS-25 Rocket Engines with New Components

NASA Completes Upper Part of Artemis II Core Stage

STELLAR CHEMISTRY
ExoMars discovers hidden water in Mars' Grand Canyon

Scientists envision what Mars would look like as an exoplanet

NASA begins testing robotics to bring first samples back from Mars

NASA's Ingenuity Mars Helicopter Reaches a Total of 30 Minutes Aloft

STELLAR CHEMISTRY
On they march as China records 401st flight of Long March rocket family

China's Long March carrier rocket embarks on 400th mission

First crew of space station provide a full update on China's progress

Milestone mission for China's first commercial rocket company

STELLAR CHEMISTRY
Kepler Communications announces testing of Aether Network with Spire Global

New space economy ready to lift off thanks to Finnish innovation

Kleos' Patrol Mission Satellites Ready and Shipped to Launch Site

Europe opens up a new space to commercial services

STELLAR CHEMISTRY
NASA-NOAA tech will aid marine oil spill response

New smart-roof coating enables year-round energy savings

Nike buys virtual sneaker firm as metaverse buzz grows

Technique enables real-time rendering of scenes in 3D

STELLAR CHEMISTRY
Founding members of world's first independent space science mission confirmed

Life arose on hydrogen energy

Stellar "ashfall" could help distant planets grow

"Newer, nimbler, faster:" Venus probe will search for signs of life in clouds of sulfuric acid

STELLAR CHEMISTRY
Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry

Cracking the mystery of nitrogen ice dynamics on Pluto

Planet decision that booted out Pluto is rooted in folklore, astrology

Are Water Plumes Spraying from Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.