24/7 Space News
STELLAR CHEMISTRY
NASA's Roman Team Selects Survey to Map Our Galaxy's Far Side
This image shows two views of the same spiral galaxy, called IC 5332, as seen by two NASA observatories - the James Webb Space Telescope's observations appear at the top left and the Hubble Space Telescope's at the bottom right. The views are mainly so different due to the wavelengths of light they each showcase. Hubble's visible and ultraviolet observation features dark regions where dust absorbs those types of light. Webb sees longer wavelengths and detects that dust glowing in infrared. But neither could conduct an efficient survey of our Milky Way galaxy because it covers so much sky area; since IC 5332 is around 30 million light-years away, it appears as a small spot. It would take Hubble or Webb decades to survey the Milky Way, but NASA's upcoming Nancy Grace Roman Space Telescope could do it in less than a month.
NASA's Roman Team Selects Survey to Map Our Galaxy's Far Side
by Ashley Balzer for GSFC News
Greenbelt MD (SPX) Mar 14, 2024

NASA's Nancy Grace Roman Space Telescope team has announced plans for an unprecedented survey of the plane of our Milky Way galaxy. It will peer deeper into this region than any other survey, mapping more of our galaxy's stars than all previous observations combined.

"There's a really broad range of science we can explore with this type of survey, from star formation and evolution to dust in between stars and the dynamics of the heart of the galaxy," said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard and Smithsonian in Cambridge, Massachusetts, who co-authored a white paper describing some of the benefits of such an observing program.

A galactic plane survey was the top-ranked submission following a 2021 call for Roman survey ideas. Now, the scientific community will work together to design the observational program ahead of Roman's launch by May 2027.

"There will be lots of trade-offs since scientists will have to choose between, for example, how much area to cover and how completely to map it in all the different possible filters," said paper co-author Robert Benjamin, an astronomer at the University of Wisconsin-Whitewater.

While the details of the survey remain to be determined, scientists say if it covered about 1,000 square degrees - a region of sky as large as 5,000 full moons - it could reveal well over 100 billion cosmic objects (mainly stars).

"That would be pretty close to a complete census of all the stars in our galaxy, and it would only take around a month," said Roberta Paladini, a senior research scientist at Caltech/IPAC in Pasadena, California, and the white paper's lead author. "It would take decades to observe such a large patch of the sky with the Hubble or James Webb space telescopes. Roman will be a survey machine!"

Milky Way Anatomy
Observatories with smaller views of space have provided exquisite images of other galaxies, revealing complex structures. But studying our own galaxy's anatomy is surprisingly difficult. The plane of the Milky Way covers such a large area on the sky that studying it in detail can take a very long time. Astronomers also must peer through thick dust that obscures distant starlight.

While we've studied our solar system's neighborhood well, Zucker says, "we have a very incomplete view of what the other half of that Milky Way looks like beyond the galactic center."

Observatories like NASA's retired Spitzer Space Telescope have conducted large-area surveys of the galactic plane in longer wavelengths of light and revealed some star-forming regions on the far side of the galaxy. But it couldn't resolve fine details like Roman will do.

"Spitzer set up the questions that Roman will be able to solve," Benjamin said.

Roman's combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. And seeing stars in different wavelengths of light - optical and infrared - will help astronomers learn things such as the stars' temperatures. That one piece of information unlocks much more data, from the star's evolutionary stage and composition to its luminosity and size.

"We can do very detailed studies of things like star formation and the structure of our own galaxy in a way that we can't do for any other galaxy," Paladini said.

Roman will offer new insights about the structure of the central region known as the bulge, the "bar" that stretches across it, and the spiral arms that extend from it.

"We'll basically rewrite the 3D picture of the far side of the galaxy," Zucker said.

Roman's sharp vision will help astronomers see individual stars even in stellar nurseries on the far side of the galaxy. That will help Roman generate a huge new catalog of stars since it will be able to map 10 times farther than previous precision mapping by ESA's (the European Space Agency's) Gaia space mission. Gaia mapped over 1 billion stars in 3D largely within about 10,000 light-years. Roman could map up to 100 billion stars 100,000 light-years away or more (stretching out to the most distant edge of our galaxy and beyond).

The Galactic Plane Survey is Roman's first announced general astrophysics survey - one of several observation programs Roman will do in addition to its three core community surveys and Coronagraph technology demonstration. At least 25% of Roman's five-year primary mission will be allocated to general astrophysics surveys in order to pursue science that can't be done with only the mission's core community survey data. Astronomers from all over the world will have the opportunity to use Roman and propose cutting-edge research, enabling the astronomical community to utilize the full potential of Roman's capabilities to conduct extraordinary science.

Related Links
Nancy Grace Roman Space Telescope
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Study: Stars travel more slowly at Milky Way's edge
Boston MA (SPX) Jan 29, 2024
By clocking the speed of stars throughout the Milky Way galaxy, MIT physicists have found that stars further out in the galactic disk are traveling more slowly than expected compared to stars that are closer to the galaxy's center. The findings raise a surprising possibility: The Milky Way's gravitational core may be lighter in mass, and contain less dark matter, than previously thought. The new results are based on the team's analysis of data taken by the Gaia and APOGEE instruments. Gaia is an o ... read more

STELLAR CHEMISTRY
Pioneering Gemini, Apollo astronaut Thomas Stafford dies at 93

From Beyond Beyond, Voyager 1's unexpected message sparks hope and intrigue

Under pressure - space exploration in our time

Modi says India's first astronauts will inspire nation

STELLAR CHEMISTRY
SpaceX's Starship: Advancing Toward Reusability with Lessons Learned

SpaceX launches 23 Starlink satellites

Leonid Capital Partners Invests $6.25 Million in Space Propulsion Innovator Phase Four

Flying first on Ariane 6

STELLAR CHEMISTRY
A Return to Your Regularly Scheduled Touch-And-Go: Sols 4130-4131

It's go for drilling at Mineral King: Sols 4125-4126:

NASA and JAXA advance Martian Moons study with instrument handoff

Life on Mars, together

STELLAR CHEMISTRY
Chang'e 6 and new rockets highlight China's packed 2024 space agenda

Long March 5 deploys Communication Technology Demonstrator 11 satellite

Shenzhou 17 astronauts complete China's first in-space repair job

Tiangong Space Station's Solar Wings Restored After Spacewalk Repair by Shenzhou XVII Team

STELLAR CHEMISTRY
Rivada Space Networks Unveils OuterNET: A Global Communications Revolution

Intelsat and Cloudcast Digital Launch Advanced Land Mobility Services in India

Lynk Expands Global Mobile Connectivity with Launch of Additional Space-Based Cell Towers

Airbus Prepares EUTELSAT 36D Satellite for Launch with Innovative BelugaST Transport

STELLAR CHEMISTRY
MatSing Elevates Satellite Communications with Advanced Lens Antenna Technology

Revolutionary Laser Technology Shapes the Future of Space Exploration

QuickLogic and Zero-Error Systems radiation-resistant eFPGA IP for space

Frontgrade Debuts Game-Changing Plastic Microcontroller for Space

STELLAR CHEMISTRY
Webb finds ethanol, other icy ingredients for making planets

Hold on to your atmospheres: how planet size affects atmospheric escape

CUTE's groundbreaking design paves the way for future small-scale space missions

Earth as a test object

STELLAR CHEMISTRY
Unlocking the Secrets of Eternal Ice in the Kuiper Belt

NASA Armstrong Updates 1960s Concept to Study Giant Planets

New moons of Uranus and Neptune announced

NASA's New Horizons Detects Dusty Hints of Extended Kuiper Belt

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.