. 24/7 Space News .
STELLAR CHEMISTRY
NASA's NuSTAR mission proves superstar Eta Carinae shoots cosmic rays
by Francis Reddy for GSFC News
Greenbelt MD (SPX) Jul 04, 2018

Eta Carinae shines in X-rays in this image from NASA's Chandra X-ray Observatory. The colors indicate different energies. Red spans 300 to 1,000 electron volts (eV), green ranges from 1,000 to 3,000 eV and blue covers 3,000 to 10,000 eV. For comparison, the energy of visible light is about 2 to 3 eV. NuSTAR observations (green contours) reveal a source of X-rays with energies some three times higher than Chandra detects. X-rays seen from the central point source arise from the binary's stellar wind collision. The NuSTAR detection shows that shock waves in the wind collision zone accelerate charged particles like electrons and protons to near the speed of light. Some of these may reach Earth, where they will be detected as cosmic ray particles. X-rays scattered by debris ejected in Eta Carinae's famous 1840 eruption may produce the broader red emission.

A new study using data from NASA's NuSTAR space telescope suggests that Eta Carinae, the most luminous and massive stellar system within 10,000 light-years, is accelerating particles to high energies - some of which may reach Earth as cosmic rays.

"We know the blast waves of exploded stars can accelerate cosmic ray particles to speeds comparable to that of light, an incredible energy boost," said Kenji Hamaguchi, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and the lead author of the study. "Similar processes must occur in other extreme environments. Our analysis indicates Eta Carinae is one of them."

Astronomers know that cosmic rays with energies greater than 1 billion electron volts (eV) come to us from beyond our solar system. But because these particles - electrons, protons and atomic nuclei - all carry an electrical charge, they veer off course whenever they encounter magnetic fields. This scrambles their paths and masks their origins.

Eta Carinae, located about 7,500 light-years away in the southern constellation of Carina, is famous for a 19th century outburst that briefly made it the second-brightest star in the sky. This event also ejected a massive hourglass-shaped nebula, but the cause of the eruption remains poorly understood.

The system contains a pair of massive stars whose eccentric orbits bring them unusually close every 5.5 years. The stars contain 90 and 30 times the mass of our Sun and pass 140 million miles (225 million kilometers) apart at their closest approach - about the average distance separating Mars and the Sun.

"Both of Eta Carinae's stars drive powerful outflows called stellar winds," said team member Michael Corcoran, also at Goddard. "Where these winds clash changes during the orbital cycle, which produces a periodic signal in low-energy X-rays we've been tracking for more than two decades."

NASA's Fermi Gamma-ray Space Telescope also observes a change in gamma rays - light packing far more energy than X-rays - from a source in the direction of Eta Carinae. But Fermi's vision isn't as sharp as X-ray telescopes, so astronomers couldn't confirm the connection.

To bridge the gap between low-energy X-ray monitoring and Fermi observations, Hamaguchi and his colleagues turned to NuSTAR. Launched in 2012, NuSTAR can focus X-rays of much greater energy than any previous telescope. Using both newly taken and archival data, the team examined NuSTAR observations acquired between March 2014 and June 2016, along with lower-energy X-ray observations from the European Space Agency's XMM-Newton satellite over the same period.

Eta Carinae's low-energy, or soft, X-rays come from gas at the interface of the colliding stellar winds, where temperatures exceed 70 million degrees Fahrenheit (40 million degrees Celsius). But NuSTAR detects a source emitting X-rays above 30,000 eV, some three times higher than can be explained by shock waves in the colliding winds. For comparison, the energy of visible light ranges from about 2 to 3 eV.

The team's analysis, presented in a paper published on Monday, July 2, in Nature Astronomy, shows that these "hard" X-rays vary with the binary orbital period and show a similar pattern of energy output as the gamma rays observed by Fermi.

The researchers say that the best explanation for both the hard X-ray and the gamma-ray emission is electrons accelerated in violent shock waves along the boundary of the colliding stellar winds. The X-rays detected by NuSTAR and the gamma rays detected by Fermi arise from starlight given a huge energy boost by interactions with these electrons.

Some of the superfast electrons, as well as other accelerated particles, must escape the system and perhaps some eventually wander to Earth, where they may be detected as cosmic rays.

"We've known for some time that the region around Eta Carinae is the source of energetic emission in high-energy X-rays and gamma rays", said Fiona Harrison, the principal investigator of NuSTAR and a professor of astronomy at Caltech in Pasadena, California.

"But until NuSTAR was able to pinpoint the radiation, show it comes from the binary and study its properties in detail, the origin was mysterious."


Related Links
NuSTAR space telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Mysterious IceCube event may be caused by a tau neutrino
Mainz, Germany (SPX) Jun 20, 2018
It was just eight years ago that the IceCube detector, a research center located at the South Pole to detect neutrinos emanating from the cosmos, was commissioned. Three years later, it began to register the first momentous results. The detection of high-energy neutrinos by IceCube made viable completely new options for explaining how our universe works. "These neutrinos with their considerable energy are cosmic messengers we have never encountered before and it is extremely important that we unde ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NanoRacks Brings 40 Students Experiments to Space Station, New Commercial Customers

NASA leverages public and private partnerships for space science with AI boost

It's in the blood: guiding rafts down Poland's mountain gorge

New head of 'space nation' aims for the stars

STELLAR CHEMISTRY
China to develop new series of carrier rockets: expert

Dragon Now Installed To Station For Month-Long Stay

Dragon delivers some ICE

'Flying brain' blasts off on cargo ship toward space station

STELLAR CHEMISTRY
Top 10 Teams Selected in Virtual Model Stage of NASA's 3D-Printed Habitat Challenge

Mars valleys traced back to precipitation

The meteorite 'Black Beauty' expands the window for when life might have existed on Mars

Precipitation explains Mars' fluvial patterns, astronomers claim

STELLAR CHEMISTRY
China Rising as Major Space Power

China launches new-tech experiment twin satellites

China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

STELLAR CHEMISTRY
Yes we've got a space agency - but our industry needs 'Space Prize Australia'

GomSpace and Aerial Maritime Ltd enter MOU for delivery and operation of a global constellation

SSL ships first of 3 ComSats slated for launch this summer

Forget Galileo - UK space sector should look to young stars instead

STELLAR CHEMISTRY
Electronic skin stretched to new limits

Scientists use a photonic quantum simulator to make virtual movies of molecules vibrating

Clearing out space junk, one step at a time

Smarter, faster algorithm cuts number of steps to solve problems

STELLAR CHEMISTRY
Researchers see beam of light from first confirmed neutron star merger emerge from behind sun

First confirmed image of newborn planet caught with ESO's VLT

Detecting the Boiling Atmosphere of the Hottest Known Exoplanet

New Infrared Instrument Searches for Habitable Planets

STELLAR CHEMISTRY
Webb Telescope to target Jupiter's Great Red Spot

Charon at 40: four decades of discovery on Pluto's largest moon

A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.