. 24/7 Space News .
ICE WORLD
NASA's ICESat-2 measures Arctic Ocean's sea ice thickness, snow cover
by Kate Ramsayer for GSFC News
Greenbelt MD (SPX) May 15, 2020

Scientists have used NASA's ICESat-2 to measure the thickness of Arctic sea ice, as well as the depth of snow on the ice. Here, ridges and cracks have formed in sea ice in the Arctic Ocean. Video: Measuring Sea Ice Thickness With ICESat-2

Arctic sea ice helps keep Earth cool, as its bright surface reflects the Sun's energy back into space. Each year scientists use multiple satellites and data sets to track how much of the Arctic Ocean is covered in sea ice, but its thickness is harder to gauge. Initial results from NASA's new Ice Cloud and land Elevation Satellite-2 (ICESat-2) suggest that the sea ice has thinned by as much as 20% since the end of the first ICESat mission (2003-2009), contrary to existing studies that find sea ice thickness has remained relatively constant in the last decade.

ICESat-2 has a laser altimeter, which uses pulses of light to precisely measure height down to about an inch. Each second, the instrument sends out 10,000 pulses of light that bounce off the surface of Earth and return to the satellite and records the length of time it takes to make that round trip. The light reflects off the first substance it hits, whether that's open water, bare sea ice or snow that has accumulated on top of the ice, so scientists use a combination of ICESat-2 measurements and other data to calculate sea ice thickness.

By comparing ICESat-2 data with measurements from another satellite, researchers have also created the first satellite-based maps of the amount of snow that has accumulated on top of Arctic sea ice, tracking this insulating material.

"The Arctic sea ice pack has changed dramatically since monitoring from satellites began more than four decades ago," said Nathan Kurtz, ICESat-2 deputy project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The extraordinary accuracy and year-round measurement capability of ICESat-2 provides an exciting new tool to allow us to better understand the mechanisms leading to these changes, and what this means for the future."

Arctic sea ice thickness dropped drastically in the first decade of the 21st Century, as measured by the first ICESat mission from 2003 to 2009 and other methods. The European Space Agency's CryoSat-2, launched in 2010, has measured a relatively consistent thickness in Arctic sea ice since then. With the launch of ICESat-2 in 2018, researchers looked to this new way of measuring sea ice thickness to advance the study of this data record.

"We can't get thickness just from ICESat-2 itself, but we can use other data to derive the measurement," said Petty. For example, the researchers subtract out the height of snow on top of the sea ice by using computer models that estimate snowfall. "The first results were very encouraging."

In their study, published recently in the Journal of Geophysical Research: Oceans, Petty and his colleagues generated maps of Arctic sea ice thickness from October 2018 to April 2019 and saw the ice thickening through the winter as expected.

Overall, however, calculations using ICESat-2 found that the ice was thinner during that time period than what researchers have found using CryoSat-2 data. Petty's group also found that small but significant 20% decline in sea ice thickness by comparing February/March 2019 ICESat-2 measurements with those calculated using ICESat in February/March 2008 - a decline that the CryoSat-2 researchers don't see in their data.

These are two very different approaches to measuring sea ice, Petty said, each with its own limitations and benefits. CryoSat-2 carries a radar to measure height, as opposed to ICESat-2's lidar, and radar mostly passes through snow to measure the top of the ice. Radar measurements like the ones from CryoSat-2 could be thrown off by seawater flooding the ice, he noted. In addition, ICESat-2 is still a young mission and the computer algorithms are still being refined, he said, which could ultimately change the thickness findings.

"I think we're going to learn a lot from having these two approaches to measuring ice thickness. They might be giving us an upper and lower bound on the sea ice thickness, and the right answer is probably somewhere in between," Petty said. "There are reasons why ICESat-2 estimates could be low, and reasons why CryoSat-2 could be high, and we need to do more work to understand and bring these measurements in line with each other."

With ICESat-2 and CryoSat-2 using two different methods to measure ice thickness - one measuring the top of the snow, the other the boundary between the bottom of the snow layer and the top of the ice layer - but researchers realized they could combine the two to calculate the snow depth.

"This is the first time ever that we can get snow depth across the entire Arctic Ocean's sea ice cover," said Ron Kwok, a sea ice scientist at NASA's Jet Propulsion Laboratory in Southern California and author of another study in JGR Oceans. "The Arctic region is a desert - but what snow we do get is very important in terms of the climate and insulating sea ice."

The study found that snow starts building up slowly in October, when newly formed ice has an average of about 2 inches (5 centimeters) of snow on it and multiyear ice has an average of 5.5 inches (14 cm) of snow. Snowfall picks up later in the winter in December and January and reaches its maximum depth in April, when the relatively new ice has an average of 6.7 inches (17 cm) and the older ice has an average of 10.6 inches (27 cm) of snow.

When the snow melts in the spring, it can pool up on the sea ice - those melt ponds absorb heat from the Sun and can warm up the ice faster, just one of the impacts of snow on ice.


Related Links
ICESat-2
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
New technique uses radar to gauge methane release from Arctic lakes
Fairbanks AK (SPX) May 12, 2020
A University of Alaska Fairbanks-led research team has developed a way to use satellite images to determine the amount of methane being released from northern lakes, a technique that could help climate change modelers better account for this potent greenhouse gas. By using synthetic aperture radar, or SAR, researchers were able to find a correlation between "brighter" satellite images of frozen lakes and the amount of methane they produce. Comparing those SAR images with ground-level methane measu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Google affiliate abandons futuristic neighborhood project

Spider eyes in space

Ready, set, go for COVID-conscious astronaut training

Airbus and Xenesis sign payload contract for Bartolomeo Platform on ISS

ICE WORLD
Launch Complex 39B prepared to support Artemis I

Firefly Aerospace achieves AS9100 Quality Certification and readies for first Firefly Alpha launch

Express satellites to be launched on 30 July, Proton-M repairs to end in June

Why our launch of the NASA and SpaceX Demo-2 mission to the ISS is essential

ICE WORLD
NASA's Perseverance Rover Spacecraft Put in Launch Configuration

NASA Perseverance Mars Rover Scientists Train in the Nevada Desert

NASA's Perseverance Rover Mission Getting in Shape for Launch

Perseverance Presses On, Remains Targeted for Summer Launch

ICE WORLD
China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

China's new spacecraft returns to Earth: official

China's space test hits snag with capsule 'anomaly'

ICE WORLD
Inmarsat launches solution for the rail industry

ThinKom completes Antenna Interoperability Demonstrations on Ku-Band LEO constellation

Building satellites amid COVID-19

Infostellar has raised a total of $3.5M in convertible bonds

ICE WORLD
China tests 3D printing in space for first time

Liquid metal research invokes 'Terminator' film - but much friendlier

German 3D printing buffs pitch in with virus-fighting network

Special effects and virtual guests: China weddings go online

ICE WORLD
Scientists reveal solar system's oldest molecular fluids could hold the key to early life

Life on the rocks helps scientists understand how to survive in extreme environments

Study: Life might survive, and thrive, in a hydrogen world

Exoplanets: How we'll search for signs of life

ICE WORLD
Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter probe JUICE: Final integration in full swing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.