![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) May 07, 2018
NASA has received radio signals indicating that the first-ever CubeSats headed to deep space are alive and well. The first signal was received at 12:15 p.m. PDT (3:15 p.m. EDT, 19:15 UTC) May 5; the second at 1:58 p.m. PDT (4:58 p.m. EDT). Engineers will now be performing a series of checks before both CubeSats enter their cruise to deep space. Mars Cube One, or MarCO, is a pair of briefcase-sized spacecraft that launched along with NASA's InSight Mars lander at 4:05 a.m. PDT (7:05 a.m. EDT) Saturday from Vandenberg Air Force Base in Central California. InSight is a scientific mission that will probe the Red Planet's deep interior for the first time; the name stands for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. The twin MarCO CubeSats are on their own separate mission: rather than collecting science, they will follow the InSight lander on its cruise to Mars, testing out miniature spacecraft technology along the way. Both were programmed to unfold their solar panels soon after launch, followed by several opportunities to radio back their health. "Both MarCO-A and B say 'Polo!' It's a sign that the little sats are alive and well," said Andy Klesh, chief engineer for the MarCO mission at NASA's Jet Propulsion Laboratory in Pasadena, California, which built the twin spacecraft. The computers inside each MarCO CubeSat haven't been turned on since being tested at California Polytechnic State University, San Luis Obispo, in mid-March, where they were prepared for launch by Tyvak Nano-Satellite Systems of Irvine, California. Each spacecraft had to do a lot of things right by itself for the team to hear a signal: batteries had to retain enough charge for the spacecraft to deploy their solar arrays, stabilize their attitude, turn toward the Sun and turn on their radios. A couple of weeks will be spent assessing how the MarCO CubeSats are performing. If they survive the radiation of space and function as planned, they'll fly over the Red Planet during InSight's entry, descent and landing in November. They each have a special antenna to relay InSight's vital signs during the infamous "Seven Minutes of Terror," the crucial phase which has claimed the majority of humanity's probes sent to land on the Red Planet. CubeSats are a kind of boxy satellite invented to teach engineering students how to build spacecraft. Today, they offer access to space for private companies and research institutions. They're just one kind of "SmallSat," which includes a broad range organized by weight class. CubeSats are generally under 33 pounds (15 kilograms), and can weigh as little as about five pounds (2.5 kilograms). They're distinctively modular, which makes it easier to buy "plug-in" parts rather than custom-design every part of the spacecraft. NASA is taking the opportunity to test several experimental systems with MarCO. Their radios, folding high-gain antennas, attitude control and propulsion systems are all included to prove new technologies in deep space. "We're nervous but excited," said Joel Krajewski of JPL, MarCO's project manager. "A lot of work went into designing and testing these components so that they could survive the trip to Mars and relay data during InSight's landing. But our broader goal is to learn more about how to adapt CubeSat technologies for future deep-space missions." When InSight arrives on Mars in November, it won't rely on MarCO for sending landing data back to Earth. That job will go to NASA's Mars Reconnaissance Orbiter, as well as several Earth-based astronomy telescopes. But the MarCO mission could help prove the potential for CubeSats as a kind of bring-your-own "black box" for future NASA missions.
![]() ![]() X-ray navigation considered for possible CubeSat mission Greenbelt MD (SPX) May 04, 2018 Now that NASA has shown the viability of autonomous X-ray navigation in space, a team led by the Smithsonian Astrophysical Observatory plans to include the technology on a proposed CubeSat mission to the Moon, and NASA engineers are now studying the possibly of adding the capability to future human-exploration spacecraft. Interest in this emerging capability to guide spacecraft to the far reaches of the solar system comes just months after NASA scientist Keith Gendreau and his team at the agency's ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |