. | . |
NASA visualization rounds up the best-known black hole systems by Francis Reddy for GSFC News Greenbelt MD (SPX) May 04, 2022
Nearby black holes and their stellar companions form an astrophysical rogues' gallery in this new NASA visualization. Stars born with more than about 20 times the Sun's mass end their lives as black holes. As the name implies, black holes don't glow on their own because nothing can escape them, not even light. Until 2015, when astronomers first detected merging black holes through the space-time ripples called gravitational waves, the main way to find these ebony enigmas was to search for them in binary systems where they interacted with companion stars. And the best way to do that was to look in X-rays. This visualization shows 22 X-ray binaries in our Milky Way galaxy and its nearest neighbor, the Large Magellanic Cloud, that host confirmed stellar-mass black holes. The systems appear at the same physical scale, demonstrating their diversity. Their orbital motion is sped up by nearly 22,000 times, and the viewing angles replicate how we see them from Earth. When paired with a star, a black hole can collect matter in two ways. In many cases, a stream of gas can flow directly from the star to the black hole. In others, such as the first confirmed black hole system, Cygnus X-1, the star produces a dense outflow called a stellar wind, some of which the black hole's intense gravity gathers up. So far, there's no clear consensus on which mode is used by GRS 1915, the big system at the center of the visualization. As it arrives at the black hole, the gas goes into orbit and forms a broad, flattened structure called an accretion disk. GRS 1915's accretion disk may extend more than 50 million miles (80 million kilometers), greater than the distance separating Mercury from the Sun. Gas in the disk heats up as it slowly spirals inward, glowing in visible, ultraviolet, and finally X-ray light. The star colors range from blue-white to reddish, representing temperatures from 5 times hotter to 45% cooler than our Sun. Because the accretion disks reach even higher temperatures, they use a different color scheme. While the black holes are shown on a scale reflecting their masses, all are depicted much larger than in reality. Cygnus X-1's black hole weighs about 21 times more than the Sun, but its surface - called its event horizon - spans only about 77 miles (124 kilometers). The oversized spheres also cover up visible distortions that would be produced by the black holes' gravitational effects.
Search reveals eight new sources of black hole echoes Boston MA (SPX) May 03, 2022 Scattered across our Milky Way galaxy are tens of millions of black holes - immensely strong gravitational wells of spacetime, from which infalling matter, and even light, can never escape. Black holes are dark by definition, except on the rare occasions when they feed. As a black hole pulls in gas and dust from an orbiting star, it can give off spectacular bursts of X-ray light that bounce and echo off the inspiraling gas, briefly illuminating a black hole's extreme surroundings. Now MIT astronom ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |