. | . |
NASA team troubleshoots asteroid-bound Lucy across the solar system by Lauren Duda for LMC News Greenbelt MD (SPX) Aug 04, 2022
Following the successful launch of NASA's Lucy spacecraft on Oct. 16, 2021, a group of engineers huddled around a long conference table in Titusville, Florida. Lucy was mere hours into its 12-year flight, but an unexpected challenge had surfaced for the first-ever Trojan asteroids mission. Data indicated that one of Lucy's solar arrays powering the spacecraft's systems - designed to unfurl like a hand fan - hadn't fully opened and latched, and the team was figuring out what to do next. Teams from NASA and Lucy mission partners quickly came together to troubleshoot. On the phone were team members at Lockheed Martin's Mission Support Area outside of Denver, who were in direct contact with the spacecraft. The conversation was quiet, yet intense. At one end of the room, an engineer sat with furrowed brow, folding and unfolding a paper plate in the same manner that Lucy's huge circular solar arrays operate. There were so many questions. What happened? Was the array open at all? Was there a way to fix it? Would Lucy be able to safely perform the maneuvers needed to accomplish its science mission without a fully deployed array? With Lucy already speeding on its way through space, the stakes were high. Within hours, NASA pulled together Lucy's anomaly response team, comprising members from science mission lead Southwest Research Institute (SwRI) in Austin, Texas; mission operations lead NASA's Goddard Space Flight Center in Greenbelt, Maryland; spacecraft builder Lockheed Martin; and Northrop Grumman in San Diego, solar array system designer and builder. "This is a talented team, firmly committed to the success of Lucy," said Donya Douglas-Bradshaw, former Lucy project manager from NASA Goddard. "They have the same grit and dedication that got us to a successful launch during a once-in-a-lifetime pandemic." United in their pursuit to ensure Lucy would reach its fullest potential, the team began an exhaustive deep dive to determine the cause of the issue and develop the best path forward. Given that the spacecraft was otherwise perfectly healthy, the team wasn't rushing into anything. "We have an incredibly talented team, but it was important to give them time to figure out what happened and how to move forward," said Hal Levison, Lucy's principal investigator from SwRI. "Fortunately, the spacecraft was where it was supposed to be, functioning nominally, and - most importantly - safe. We had time." Staying focused during many long days and nights, the team worked through options. To evaluate Lucy's solar array configuration in real time, the team fired thrusters on the spacecraft and gathered data on how those forces made the solar array vibrate. Next, they fed the data into a detailed model of the array's motor assembly to infer how rigid Lucy's array was - which helped uncover the source of the issue. At last, they closed in on the root cause: a lanyard designed to pull Lucy's massive solar array open was likely snarled on its bobbin-like spool. After months of further brainstorming and testing, Lucy's team settled on two potential paths forward. In one, they would pull harder on the lanyard by running the array's back-up deployment motor at the same time as its primary motor. The power from two motors should allow the jammed lanyard to wind in further and engage array's latching mechanism. While both motors were never originally intended to operate at the same time, the team used models to ensure the concept would work. The second option: use the array as it was - nearly fully deployed and generating more than 90% of its expected power. "Each path carried some element of risk to achieve the baseline science objectives," said Barry Noakes, Lockheed Martin's deep space exploration chief engineer. "A big part of our effort was identifying proactive actions that mitigate risk in either scenario." The team mapped out and tested possible outcomes for both options. They analyzed hours of the array's test footage, constructed a ground-based replica of the array's motor assembly, and tested the replica past its limits to better understand risks of further deployment attempts. They also developed special, high-fidelity software to simulate Lucy in space and gauge any potential ripple effects a redeployment attempt could have on the spacecraft. "The cooperation and teamwork with the mission partners was phenomenal," said Frank Bernas, vice president, space components and strategic businesses at Northrop Grumman. After months of simulations and testing, NASA decided to move forward with the first option - a multi-step attempt to fully redeploy the solar array. On seven occasions in May and June, the team commanded the spacecraft to simultaneously run the primary and backup solar array deployment motors. The effort succeeded, pulling in the lanyard, and further opening and tensioning the array. The mission now estimates that Lucy's solar array is between 353 degrees and 357 degrees open (out of 360 total degrees for a fully deployed array). While the array is not fully latched, it is under substantially more tension, making it stable enough for the spacecraft to operate as needed for mission operations. The spacecraft is now ready and able to complete the next big mission milestone - an Earth-gravity assist in October 2022. Lucy is scheduled to arrive at its first asteroid target in 2025.
Modeling reveals how dwarf planet Ceres powers unexpected geologic activity Blacksburg VA (SPX) Aug 02, 2022 For a long time, our view of Ceres was fuzzy, said Scott King, a geoscientist in the Virginia Tech College of Science. A dwarf planet and the largest body found in the asteroid belt - the region between Jupiter and Mars speckled with hundreds of thousands of asteroids - Ceres had no distinguishable surface features in existing telescopic observations from Earth. Then, in 2015, the hazy orb that was Ceres came into view. That view was stunning to scientists such as King. Data and images collected b ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |