. 24/7 Space News .
SPACE TRAVEL
NASA-supported solar sail could take science to new heights
by Staff Writers
Washington DC (SPX) May 25, 2022

Diffractive solar sails, depicted in this conceptual illustration, could enable missions to hard-to-reach places, like orbits over the Sun's poles.

As NASA's exploration continues to push boundaries, a new solar sail concept selected by the agency for development toward a demonstration mission could carry science to new destinations.

The Diffractive Solar Sailing project was selected for Phase III study under the NASA Innovative Advanced Concepts (NIAC) program. Phase III aims to strategically transition NIAC concepts with the highest potential impact for NASA, other government agencies, or commercial partners.

"As we venture farther out into the cosmos than ever before, we'll need innovative, cutting-edge technologies to drive our missions," said NASA Administrator Bill Nelson. "The NASA Innovative Advanced Concepts program helps to unlock visionary ideas - like novel solar sails - and bring them closer to reality."

Like a sailboat using wind to cross the ocean, solar sails use the pressure exerted by sunlight to propel a craft through space. Existing reflective solar sail designs are typically very large and very thin, and they are limited by the direction of the sunlight, forcing tradeoffs between power and navigation. Diffractive lightsails would use small gratings embedded in thin films to take advantage of a property of light called diffraction, which causes light to spread out when it passes through a narrow opening. This would allow the spacecraft to make more efficient use of sunlight without sacrificing maneuverability.

"Exploring the universe means we need new instruments, new ideas, and new ways of going places," said Jim Reuter, associate administrator for NASA's Space Technology Mission Directorate (STMD) at NASA Headquarters in Washington. "Our goal is to invest in those technologies throughout their lifecycle to support a robust ecosystem of innovation."

The new Phase III award will give the research team $2 million over two years to continue technology development in preparation for a potential future demonstration mission. The project is led by Amber Dubill of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

"NIAC allows us to foster some of the most creative technology concepts in aerospace," said Mike LaPointe, acting program executive for the NIAC program at NASA Headquarters. "Our goal is to change the possible, and diffractive solar sailing promises to do just that for a number of exciting new mission applications."

Diffractive lightsailing would extend solar sail capability beyond what's possible with missions in development today. The project is led by Amber Dubill of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. The feasibility of the concept was previously studied under NIAC's Phase I and Phase II awards, led by Dr. Grover Swartzlander of Rochester Institute of Technology in New York, who continues as a co-investigator on the project. Les Johnson, lead for two of NASA's upcoming solar sail missions at NASA's Marshall Space Flight Center in Huntsville, Alabama, also is a co-investigator. Under the earlier awards, the team designed, created, and tested different types of diffractive sail materials; conducted experiments; and designed new navigation and control schemes for a potential diffractive lightsail mission orbiting the Sun's poles.

Work under Phase III will optimize the sail material and perform ground tests in support of this conceptual solar mission. Orbits passing over the Sun's north and south poles are difficult to achieve using conventional spacecraft propulsion. Lightweight diffractive lightsails, propelled by the constant pressure of sunlight, could place a constellation of science spacecraft in orbit around the Sun's poles to advance our understanding of the Sun and improve our space weather forecasting capabilities.

"Diffractive solar sailing is a modern take on the decades old vision of lightsails. While this technology can improve a multitude of mission architectures, it is poised to highly impact the heliophysics community's need for unique solar observation capabilities," said Dubill. "With our team's combined expertise in optics, aerospace, traditional solar sailing, and metamaterials, we hope to allow scientists to see the Sun as never before."

NIAC supports visionary research ideas through multiple progressive phases of study. NASA announced 17 Phase I and Phase II proposal selections in February 2022. NIAC is funded by NASA's STMD, which is responsible for developing the new cross-cutting technologies and capabilities needed by the agency to achieve its current and future missions.

For more information about NASA's investments in space technology, visit here


Related Links
NASA Space Technology
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
NASA's new solar sail system to be tested on-board NanoAvionics satellite bus
Vilnius, Lithuania (SPX) May 03, 2022
NanoAvionics has been selected to build a 12U nanosatellite bus for an in-orbit demonstration of NASA's Advanced Composite Solar Sail System (ACS3). This a result of a contract between NASA Ames Research Center and AST for a 12U bus to carry NASA's payload into low Earth orbit (LEO) including an approximately 800 square foot (74 square meter) composite boom and solar sail system. The aim of the ACS3 mission is to replace conventional rocket propellants by developing and testing solar sails using ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
NanoAvionics and Gama to set sails in space

Boeing Starliner completes key test mission to ISS, with some hiccups

Soil, sutures, and climate modeling among investigations riding SpaceX CRS-25 Dragon to ISS

NASA-supported solar sail could take science to new heights

SPACE TRAVEL
Upper Stage Propulsion System for future Artemis mission reaches major milestone

SpaceX's Transporter 5 launches with remains of 47 people for 'space burial'

Southern Launch receives further Government funding

Debris from Chinese rocket reenters atmosphere, mostly burning up

SPACE TRAVEL
Perseverance now selects its own targets to zap

Blast a Knob: Sols 3485-3486

A steep but short climb: Sols 3491-3492

NASA's Perseverance rover's playlist like no other on Mars

SPACE TRAVEL
China's space tracking ship departs for 100th mission

Researchers start planting space-bred seeds returned by Shenzhou-13

New cargo spacecraft being built

The beginning of a multi-spacecraft exploration in Martian space by China, the US and Europe

SPACE TRAVEL
Satellogic launches 4 Satellites on SpaceX Transporter-5 Mission

Sidus Space selects L3Harris Mission Critical Operations Center Software for LizzieSat constellation

OneWeb satellite to be deorbited at the end of its active lifetime

Axiom Space signs MOU with Italy to expand commercial utilization of space

SPACE TRAVEL
NASA Supports Small Business Research to power future exploration

Mitsubishi Electric develops innovative laser comms terminal

Europol sounds alarm over 3D-printed weapons

AFRL sponsorship recipient wins NASA space manufacturing contract

SPACE TRAVEL
Geology from 50 light-years away

Unistellar and SETI Institute expand Worldwide Citizen-Science Astronomy Network

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

Why haven't we discovered co-orbital exoplanets? Could tides offer a possible answer?

SPACE TRAVEL
Bern flies to Jupiter

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.