. 24/7 Space News .
OUTER PLANETS
NASA studies origins of dwarf planet Haumea
by Lonnie Shekhtman for GSFC News
Greenbelt MD (SPX) Oct 17, 2022

An interactive 3D model of Haumea, a dwarf planet in the Kuiper Belt. Credits: NASA Visualization Technology Applications and Development. View interactive model of Haumea here.

Using computer simulations, scientists based at NASA have pieced together the story of how the dwarf planet Haumea, found in the Kuiper Belt of icy worlds beyond the orbit of outermost planet Neptune, became one of the most unusual objects in the solar system.

Nearly the size of Pluto, Haumea is strange in several ways. It spins faster, by far, than anything else of its size, whirling on its axis in only four hours. Because of its fast spin, Haumea is shaped like a deflated American football instead of a sphere. Its surface, made largely of water ice, is unlike almost any other surface in the Kuiper Belt, except those of a dozen "siblings" that have similar orbits as Haumea and appear to be related to it, making up the only known "family" of objects in the Kuiper Belt.

"How did something as weird as Haumea and its family come to be?" said Jessica Noviello, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

This question inspired Noviello and her colleagues to turn to computer models that could, in theory, take Haumea apart and build it back up from scratch to understand the chemical and physical processes that shaped it.

"To explain what happened to Haumea forces us to put time limits on all these things that happened when the solar system was forming, so it starts to connect everything across the solar system," said Steve Desch, professor of astrophysics at Arizona State University in Tempe, who worked with Noviello and other colleagues on the modeling experiment described in the Planetary Science Journal on Sept. 29.

Noviello met Desch when she was a research fellow in his lab from 2019 to 2020. Desch had been working with his students for several years to try to piece together disparate clues into a clear story about the evolution of Haumea.

"There are a lot of odd, 'gee whiz' parts to Haumea," Desch said, "and trying to explain them all at once has been a challenge."

Haumea is too far away to measure precisely through an Earth-based telescope, and no space mission has yet visited it, so data is scant. Thus, to study Haumea (and other little-known worlds), scientists use computer models to make predictions that fill in the gaps.

The researchers began by feeding only three pieces of information into their models: Haumea's estimated size and mass, and its rapid four-hour "day."

The models spit out a refined prediction of Haumea's size, its overall density, and the density and size of its core, among other features. Noviello then fed this information into mathematical equations that helped her calculate the amount of ice on Haumea and the dwarf planet's volume. Additionally, she calculated how Haumea's mass is distributed and how that affects its spin. With this information in hand, she sought to simulate billions of years of evolution to see which combination of features of a baby Haumea would evolve into the mature dwarf planet it is today.

"We wanted to understand Haumea fundamentally before poking back in time," Noviello said.

The scientists assumed that baby Haumea was 3% more massive to account for the family members that once were part of it. They also assumed Haumea likely had a different spin rate and was bigger in volume. Then they slightly changed one of these features at a time in their models - such as tweaking Haumea's size up or down - and ran dozens of simulations to see how small changes in its early years would influence Haumea's evolution. When the simulations spit out results that resembled today's Haumea, scientists knew they had landed on a story that matched reality.

Based on their modeling, Noviello and her colleagues hypothesize that when the planets were first forming and everything was zipping around the solar system, Haumea collided with another object. Though this impact would have knocked off pieces, Noviello and her colleagues suggest that those pieces are not the Haumean family we see today, as other scientists have proposed. Such a powerful impact, they say, would have knocked off bits of Haumea into much more scattered orbits than the family members have.

The Haumean family we see today instead came later, as the dwarf planet's structure was taking shape: dense, rocky material was settling to the center while lighter density ice was rising to the surface, said Desch, "and when you concentrate all the mass towards the axis, it decreases the moment of inertia, so Haumea ended up spinning even faster than it does today." Fast enough, scientists calculated, that ice flung off the surface forming the Haumean family.

Meanwhile, Haumea's rocks, which, like all rocks, are slightly radioactive, generated heat that melted some ice, creating an ocean below the surface (no longer there), found paper co-author Marc Neveu, a NASA Goddard researcher. Water soaked into the rocky material at the center of Haumea and made it swell into a large core made of clay, which is less dense than rock. The larger core increased the moment of inertia and thus slowed Haumea's spin to its current rate.


Related Links
Dwarf Planets at NASA
Haumea at Wikipedia
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
The PI's Perspective: Extending Exploration and Making Distant Discoveries
Laurel MD (SPX) Aug 26, 2022
New Horizons remains healthy from its position deep in the Kuiper Belt, even as it speeds farther and farther from the Earth and Sun by about 300 million miles per year. The spacecraft is about 54 times farther from the Sun than Earth, which is about two billion miles farther out than our first science flyby target, Pluto, and about a billion miles farther out than Arrokoth, the Kuiper Belt object (KBO) New Horizons explored in 2019. As planned, the spacecraft was put into hibernation mode on June ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
NASA Crew-4 astronauts safely splash down in Atlantic

World's first space tourist plans new flight to Moon with SpaceX

Eagle-designed space drones target in-orbit construction

Cables, tie-wraps and no step

OUTER PLANETS
Orbex secures 40M pounds in Series C Funding round

NASA's Crew-5 mission casts long exposure light beam

Musk says cannot fund Starlink in Ukraine indefinitely

Electron Rocket arrives at Wallops for inaugural Rocket Lab mission from Virginia

OUTER PLANETS
Things that go bump in the night on Mars!

Sols 3621-3622: Planetary Power Puzzle

NASA's InSight waits out dust storm

Sols 3614-3615: Chemin's Moment To Shine

OUTER PLANETS
Mengtian space lab fueled ahead of upcoming launch

Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

OUTER PLANETS
Phase Four unveils game changing engine for LEO constellations

Russia launches new Angolan satellite into orbit

Eutelsat strategy update on the proposed combination with OneWeb

New Iridium Certus Service Providers to Support U.S. Government Customers

OUTER PLANETS
DLR's new optical ground station inaugurated

NASA awards contracts to assess near-space communications capabilities

Heat-proof chaotic carbides could revolutionize aerospace technology

Europe's police keep wary eye on threat from 3D-printed guns

OUTER PLANETS
Broccoli gas: A better way to find life in space

Blue Skies Space satellite will monitor how energy released by stars impacts exoplanet habitability

Heaviest element yet detected in an exoplanet atmosphere

JPL developing more tools to help search for life in deep space

OUTER PLANETS
Mars and Jupiter moons meet

NASA study suggests shallow lakes in Europa's icy crust could erupt

NASA studies origins of dwarf planet Haumea

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.