. | . |
NASA missions find 'jetlets' could power the solar wind by Mara Johnson-Groh for GSFC News Greenbelt MD (SPX) Jan 11, 2023
Scientists with NASA's Parker Solar Probe mission have uncovered significant new clues about the origins of the solar wind - a continual stream of charged particles released from the Sun that fills the solar system. Observations from multiple space and ground-based observatories show the solar wind could be largely fueled by small-scale jets, or "jetlets," at the base of the corona - the Sun's upper atmosphere. This finding is helping scientists better understand the 60-year-old mystery of what heats and accelerates the solar wind. "This new data shows us how the solar wind gets going at its source," said Nour Raouafi, the study lead and the Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. "You can see the flow of the solar wind rising from tiny jets of million-degree plasma all over the base of the corona. These findings will have a huge impact on our understanding of the heating and acceleration of the coronal and solar wind plasma." Understanding the solar wind is fundamental to our understanding of our solar system and others throughout the universe - and is the primary science goal of the Parker Solar Probe mission. Made of electrons, protons, and heavier ions, the solar wind courses through the solar system at roughly 1 million miles per hour. When the solar wind interacts with Earth's magnetic field, it can create stunning auroras as well as disruptions in GPS and communications systems. Over time, the solar wind, and stellar winds in other solar systems, can also affect the composition and evolution of planetary atmospheres - even influencing planets' habitability.
Strength in Numbers "This result implies that essentially all of the solar wind is likely released intermittently, becoming a steady flow in much the same way that the individual clapping sounds in an auditorium become a steady roar as an audience applauds," said Craig DeForest, a solar physicist at the Southwest Research Institute in Boulder, Colorado, and coauthor on the new paper. "This changes the paradigm for how we think about certain aspects of the solar wind." Jetlets, which were first observed over a decade ago, are known to be caused by a process known as magnetic reconnection, which occurs as magnetic field lines become tangled and explosively realign. Reconnection is a common process in charged gases called plasmas and is found across the universe from the Sun to near-Earth space to around black holes. In the solar corona, reconnection creates these short-lived jets of plasma that pass energy and material into the upper corona, which escape across the solar system as the solar wind. To study the jetlets and magnetic fields, scientists primarily used observations from the Solar Dynamics Observatory (SDO) and the Geostationary Operational Environmental Satellite-R Series' Solar Ultraviolet Imager (GOES-R/SUVI) instrument, as well as high-resolution magnetic field data from the Goode Solar Telescope at the Big Bear Solar Observatory in California. The whole study was driven by a phenomenon first observed by Parker Solar Probe called switchbacks - magnetic zig-zag structures in the solar wind. The combination of observations from many viewpoints, along with the high resolution of those views and Parker Solar Probe's up-close observations, helped the scientists understand the collective behavior of the jetlets. "Previously, we could not detect enough such events to explain the observed amount of mass and energy streaming from the Sun," said Judy Karpen, coauthor on the paper and heliophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "But the improved resolution of the observations and meticulous data processing enabled the new findings." The observations showed that jetlets are present in the lower solar atmosphere across the entire Sun. This makes them a tenable driver for the constant solar wind, as opposed to other phenomena that wax and wane with the 11-year cycle of solar activity, such as solar flares and coronal mass ejections. Furthermore, the scientists calculated that the energy and mass produced by the jetlets could provide most, if not all, of the amount of energy and mass seen in the solar wind.
A Breakthrough Decades in the Making "The tiny reconnection events we observed are, in a way, what Eugene Parker proposed over three decades ago," Raouafi said. "I am convinced that we are on the right path toward understanding the solar wind and coronal heating." Continued observations from Parker Solar Probe and other instruments such as NASA's Polarimeter to Unify the Corona and Heliosphere, or PUNCH, and the Daniel K. Inouye Solar Telescope, will help scientists confirm whether jetlets are the main source of solar wind. "The findings make it much easier to explain how the solar wind is accelerated and heated," DeForest said. "We're not finished with the puzzle yet, but this is a major step forward for understanding a central mystery of solar physics." Parker Solar Probe was developed as part of NASA's Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency's Goddard Space Flight Center in Greenbelt, Maryland, for NASA's Science Mission Directorate in Washington. The Johns Hopkins Applied Physics Laboratory designed, built, manages, and operates the spacecraft.
KSAT to support NOAA's Deep Space Solar Observatory Olso, Norway (SPX) Jan 06, 2023 KBR has selected KSAT to provide all Outside the Continental United States (OCONUS) SWFO Antenna Network (SAN) services. The KBR and KSAT team are developing a blended network including U.S. government ground station sites with KSAT-owned capabilities delivered as a service. Increased solar activity in recent weeks has provided opportunities for many in the Northern Hemisphere to view the aurora borealis at latitudes where it typically is not visible. Although a wonderful experience for many ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |