Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
NASA is Tracking Electron Beams from the Sun
by Karen C. Fox for Goddard Space Flight Center
Greenbelt MD (SPX) Aug 20, 2012


NASA's Advanced Composition Explorer (ACE) observes a wide array of particles that flow toward Earth from the sun to better understand the great space weather system that connects the sun to our planet. Credit: NASA/H. Zell

In the quest to understand how the world's weather moves around the globe, scientists have had to tease apart different kinds of atmospheric movement, such as the great jet streams that can move across a whole hemisphere versus more intricate, localized flows. Much the same must currently be done to understand the various motions at work in the great space weather system that links the sun and Earth as the sun shoots material out in all directions, creating its own version of a particle sea to fill up the solar system.

"People think of the sun as giving out light and heat," says Ruth Skoug, a space scientist at Los Alamos National Laboratory in Los Alamos, N.M. "But it is also always losing particles, losing mass."

For example, the sun sends out a steady outflow of solar particles called the solar wind and additionally giant, sudden explosions of material called coronal mass ejections or CMEs erupt out into space. Skoug studies a third kind of particle flow: jets of high-energy electrons streaming from the sun known as electron strahl. Through a new five-year study of observations of the strahl, Skoug and her colleagues have researched another piece of this giant space weather puzzle around Earth.

Skoug says that each fast-moving electron is by and large constrained to move along magnetic field lines that flow out from the sun, some of which loop back to touch the sun again, others which extend out to the edges of the solar system. The charge on an electron interacts with the field lines such that each particle sticks close to the line, somewhat like a bead on an abacus - with the added motion that the electron gyrates in circles around the field lines at the same time.

In general, the magnetic fields get weaker further away from the sun. A physical law that applies in those cases in which electrons are not pushed off course, or "scattered," demands that the electron gyrations get smaller and more stretched out along the field line.

If this were the only physics at work, therefore, one would expect the strahl to become a more and more focused, pencil-thin beam when measured near Earth. This measurement is done by NASA's Advanced Composition Explorer (ACE) mission, but it shows that the expected focusing doesn't quite happen.

"Wherever we look, the electron strahl is much wider than we would have expected," says Eric Christian, the NASA's deputy project scientist for ACE at NASA Goddard Space Flight Center in Greenbelt, Md. "So there must be some process that helps scatter the electrons into a wider beam."

Indeed, the strahls come in a wide variety of sizes, so Skoug and her colleagues sifted through five years worth of ACE data to see if they could find any patterns. While they spotted strahls of all widths, they did find that certain sizes showed up more frequently.

They also found that strahls along open field lines, those that do not return to the sun, have different characteristics than those on closed field lines, those that do return to the sun. On the open field lines, the most common width by far is about ten times the size of the thin beam of electrons expected if there had been no extra scattering. The closed field lines, however, showed a nearly equal number of strahls at that width and at a width some four times even larger.

The strahls on the closed field lines showed an additional pattern. While the strahls might differ in width, they did not tend to differ in the total number of electrons passing by. This suggests that the different shaped strahls - which often come from similar places on the sun - may have been the same in composition when they left the sun, but were altered by the path they traveled and scattering they encountered along their journey.

While each piece of statistical information like this may seem slightly esoteric, together they help constrain what kinds of scattering might be at work in space.

"We don't yet know how the electrons get scattered into these different widths," says Skoug. "The electrons are so spread out that they rarely bump into each other to get pushed off course, so instead we think that electromagnetic waves add energy, and therefore speed, to the particles."

There are numerous types of these waves, however, traveling at different speeds, in different sizes and in different directions, and no one yet knows which kinds of waves might be at work. Research like this helps start the process of eliminating certain scattering options, since the correct version must, of course, cause the specific variations seen by Skoug and her colleagues.

.


Related Links
ACE
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
The Sun's Almost Perfectly Round Shape Baffles Scientists
Manoa HI (SPX) Aug 20, 2012
The sun is nearly the roundest object ever measured. If scaled to the size of a beach ball, it would be so round that the difference between the widest and narrow diameters would be much less than the width of a human hair. The sun rotates every 28 days, and because it doesn't have a solid surface, it should be slightly flattened. This tiny flattening has been studied with many instrume ... read more


SOLAR SCIENCE
LRO Spectrometer Detects Helium in Moon's Atmosphere

NASA's 'Mighty Eagle' Robotic Prototype Lander Flies Again at Marshall

Roscosmos Announces Tender for Moon Rocket Design

US flags still on the moon, except one: NASA

SOLAR SCIENCE
NASA wants to measure 'Marsquakes'

Opportunity is on the Move Again

How a Mars Sample Return Mission Can Go Electric

Curiosity Finds Humor on Mars

SOLAR SCIENCE
XCOR Becomes Corporate Sponsor of Uwingu, a Space Apps Company

Florida Spaceport Stakes Claim to Commercial Missions

Dutch reality show to offer one-way tickets to Mars

NASA, Louisiana Officials Renew Partnership With National Center For Advanced Manufacturing

SOLAR SCIENCE
Hong Kong people share joy of China's manned space program

China's Long March-5 carrier rocket engine undergoes testing

China to land first moon probe next year

China launches Third satellite in its global data relay network

SOLAR SCIENCE
ATV-3 Vehicle Fails to Adjust Space Station Orbit

ISS crew to embark on two spacewalks in August

New Way of Turning Station Offers Fuel Savings on Orbit

Microgravity Science Glovebox Marks Anniversary with 'Hands' on the Future

SOLAR SCIENCE
India's GSAT-10 satellite continues its checkout for the upcoming Arianespace Ariane 5 mission

Flight Readiness Review Complete; No Constraints to Aug. 23 Launch

Pre launch verifications are underway for next Soyuz mission

GSAT-10 "spreads its wings" in preparation for Arianespace's next Ariane 5 launch

SOLAR SCIENCE
Exoplanet hosting stars give further insights on planet formation

Five Potential Habitable Exoplanets Now

RIT Leads Development of Next-generation Infrared Detectors

UCF Discovers Exoplanet Neighbor

SOLAR SCIENCE
Good vibrations

Britain and Ireland tuning into Netflix

Apple is most valuable company ever at $623 bn

Micro-thruster could move small satellites




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement