. 24/7 Space News .
WATER WORLD
NASA Study Reproduces Origins of Life on Ocean Floor
by Staff Writers
Pasadena CA (JPL) Feb 27, 2019

An image of Saturn's moon Enceladus backlit by the Sun, taken by the Cassini mission. The false color tail shows jets of icy particles and water that spray into space from an ocean that lies deep below the moon's icy surface. Future missions could search for the ingredients for life in an ocean on an icy moon like Enceladus.

Scientists have reproduced in the lab how the ingredients for life could have formed deep in the ocean 4 billion years ago. The results of the new study offer clues to how life started on Earth and where else in the cosmos we might find it.

Astrobiologist Laurie Barge and her team at NASA's Jet Propulsion Laboratory in Pasadena, California, are working to recognize life on other planets by studying the origins of life here on Earth. Their research focuses on how the building blocks of life form in hydrothermal vents on the ocean floor.

To re-create hydrothermal vents in the lab, the team made their own miniature seafloors by filling beakers with mixtures that mimic Earth's primordial ocean. These lab-based oceans act as nurseries for amino acids, organic compounds that are essential for life as we know it. Like Lego blocks, amino acids build on one another to form proteins, which make up all living things.

"Understanding how far you can go with just organics and minerals before you have an actual cell is really important for understanding what types of environments life could emerge from," said Barge, the lead investigator and the first author on the new study, published in the journal Proceedings of the National Academy of Sciences. "Also, investigating how things like the atmosphere, the ocean and the minerals in the vents all impact this can help you understand how likely this is to have occurred on another planet."

Found around cracks in the seafloor, hydrothermal vents are places where natural chimneys form, releasing fluid heated below Earth's crust. When these chimneys interact with the seawater around them, they create an environment that is in constant flux, which is necessary for life to evolve and change. This dark, warm environment fed by chemical energy from Earth may be the key to how life could form on worlds farther out in our solar system, far from the heat of the Sun.

"If we have these hydrothermal vents here on Earth, possibly similar reactions could occur on other planets," said JPL's Erika Flores, co-author of the new study.

Barge and Flores used ingredients commonly found in early Earth's ocean in their experiments. They combined water, minerals and the "precursor" molecules pyruvate and ammonia, which are needed to start the formation of amino acids. They tested their hypothesis by heating the solution to 158 degrees Fahrenheit (70 degrees Celsius) - the same temperature found near a hydrothermal vent - and adjusting the pH to mimic the alkaline environment. They also removed the oxygen from the mixture because, unlike today, early Earth had very little oxygen in its ocean. The team additionally used the mineral iron hydroxide, or "green rust," which was abundant on early Earth.

The green rust reacted with small amounts of oxygen that the team injected into the solution, producing the amino acid alanine and the alpha hydroxy acid lactate. Alpha hydroxy acids are byproducts of amino acid reactions, but some scientists theorize they too could combine to form more complex organic molecules that could lead to life.

"We've shown that in geological conditions similar to early Earth, and maybe to other planets, we can form amino acids and alpha hydroxy acids from a simple reaction under mild conditions that would have existed on the seafloor," said Barge.

Barge's creation of amino acids and alpha hydroxy acids in the lab is the culmination of nine years of research into the origins of life. Past studies looked at whether the right ingredients for life are found in hydrothermal vents, and how much energy those vents can generate (enough to power a light bulb).

But this new study is the first time her team has watched an environment very similar to a hydrothermal vent drive an organic reaction. Barge and her team will continue to study these reactions in anticipation of finding more ingredients for life and creating more complex molecules. Step by step, she's slowly inching her way up the chain of life.

This line of research is important as scientists study worlds in our solar system and beyond that may host habitable environments. Jupiter's moon Europa and Saturn's moon Enceladus, for example, could have hydrothermal vents in oceans beneath their icy crusts. Understanding how life could start in an ocean without sunlight would assist scientists in designing future exploration missions, as well as experiments that could dig under the ice to search for evidence of amino acids or other biological molecules.

Future Mars missions could return samples from the Red Planet's rusty surface, which may reveal evidence of amino acids formed by iron minerals and ancient water. Exoplanets - worlds beyond our reach but still within the realm of our telescopes - may have signatures of life in their atmospheres that could be revealed in the future.

"We don't have concrete evidence of life elsewhere yet," said Barge. "But understanding the conditions that are required for life's origin can help narrow down the places that we think life could exist."

This research was supported by the NASA Astrobiology Institute's JPL Icy Worlds team.

For more information on astrobiology at NASA, please visit here


Related Links
Astrobiology at NASA
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Rare oarfish, seen as harbingers of doom, snagged in Japan
Tokyo (AFP) Feb 26, 2019
Two rare oarfish, giant deep-sea serpents long believed by locals to be a harbinger of earthquakes and tsunamis, have been caught off the Japanese island of Okinawa. Fishermen were stunned to find a pair of the silvery fish - the bigger one measuring four metres (13 feet) - alive in their nets late last month as the number of sightings of the mysterious creature in Japanese waters continues to rise. "I had only ever heard stories about this fish," the Yomitan fisheries cooperative association' ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Company's 10th cargo supply mission featured expanded commercial capabilities for Cygnus spacecraft

First Emirati set to head to space in September: UAE

Virgin Galactic takes crew of three to altitude of 55 miles

Astronauts optimistic for ISS launch after botched flight

WATER WORLD
Firefly Aerospace Announces Mass Production Facility and Cape Canaveral Launch Site

Global Space Propulsion System Market forecast to exceed $10 billion by 2023

McDermott awarded EPC Contract for largest hydrogen cryogenic sphere ever built for NASA

Russian rocket launches Egyptian telecom satellite

WATER WORLD
NASA engineers are investigating Curiosity probe's computer reset

After a Reset, Curiosity Is Operating Normally

Signs of ancient flowing water on Mars

Creating a Space Colony Cryptocurrency

WATER WORLD
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

WATER WORLD
Innovative communications satellite built by Maxar's SSL for PSN performing post-launch maneuvers

Partnerships Spur Industry for Flourishing Space Commerce

Goonhilly Partners with the Australian Space Agency to Drive New Opportunities Worldwide

OneWeb satellite launch could be postponed after Soyuz emergency

WATER WORLD
Cobham SATCOM extends partnership with Inmarsat for L-band ground components for I-6 satellites

Laser 'drill' sets a new world record in laser-driven electron acceleration

AI may be better for detecting radar signals, facilitating spectrum sharing

Avoiding the crack of doom

WATER WORLD
New NASA mission could find more than 1,000 planets

Astronomers use new technique to find extrasolar planets

Researchers discover a flipping crab feeding on methane seeps

Discovery of Planets Around Cool Stars Enabled with Hobby-Eberly Telescope

WATER WORLD
New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon

Ultima Thule is more pancake than snowman, NASA scientists discover

New Horizons' evocative farewell glance at Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.