24/7 Space News
IRON AND ICE
NASA-led team links comet water to Earth's oceans
illustration only
NASA-led team links comet water to Earth's oceans
by Lonnie Shekhtman for GSFC News
Greenbelt MD (SPX) Dec 04, 2024

Researchers have found that water on Comet 67P/Churyumov-Gerasimenko has a similar molecular signature to the water in Earth's oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.

Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun's intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.

Research has shown that some of Earth's water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system's inner planets 4 billion years ago would have made this possible.

While the case connecting asteroid water to Earth's is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets - which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn - showed a strong link between their water and Earth's. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.

This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type - or isotope - of hydrogen. When compared to Earth's water, this hydrogen ratio in comets and asteroids can reveal whether there's a connection.

Because water with deuterium is more likely to form in cold environments, there's a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids.

Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth's water.

"It was really starting to look like these comets played a major role in delivering water to Earth," said Kathleen Mandt, planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P.

But in 2014, ESA's (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth's water reservoir. Scientists who analyzed Rosetta's water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth's oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.

"It was a big surprise and it made us rethink everything," Mandt said.

Mandt's team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the "coma" of gas and dust surrounding 67P. Mandt's team, which included Rosetta scientists, was the first to analyze all of the European mission's water measurements spanning the entire mission.

The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth's water.

"So I was just curious if we could find evidence for that happening at 67P," Mandt said. "And this is just one of those very rare cases where you propose a hypothesis and actually find it happening."

Indeed, Mandt's team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet's body.

As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.

Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.

This finding, the paper authors say, has big implications not only for understanding comets' role in delivering Earth's water, but also for understanding comet observations that provide insight into the formation of the early solar system.

"This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects," Mandt said.

Research Report:A nearly terrestrial D/H for comet 67P/Churyumov-Gerasimenko

Related Links
NASA Planetary Systems Laboratory
Asteroid and Comet Mission News, Science and Technology

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
IRON AND ICE
Ion dynamics examined as comet 67P awakens from dormancy
Berlin, Germany (SPX) Nov 14, 2024
A recent doctoral thesis at the Swedish Institute of Space Physics (IRF) and Umea University sheds light on how the interaction between comet 67P/Churyumov-Gerasimenko and the solar wind evolves as the comet moves closer to the Sun. Research conducted by Anja Moslinger delves into the intricate motion of ions during this transition phase. As a comet approaches the Sun, its interaction with the solar wind undergoes significant changes. While the basic mechanisms of this interaction far from and clo ... read more

IRON AND ICE
TransAstra to showcase Capture Bag on ISS in 2025

Robotics microbiology and agriculture dominate ISS research this month

Week starts on ISS with spacewalk preparations and research activities

NASA administrator reaches for the stars while navigating budgets and politics

IRON AND ICE
Rocket Lab conducts hypersonic suborbital test launch for DoD

Rocket Lab prepares to launch Synspective EO satellite

India launches European 'artifical eclipse' satellites

Long March 3B reaches 100th launch milestone

IRON AND ICE
Mars dust storms may be linked to warming weather patterns

Liquid on Mars was not necessarily all water

Purdue scientist expecting new world to reveal itself to Mars rover

China's Tianwen-1 probe reveals new insights into Martian internal gravity waves

IRON AND ICE
China boosts Lunar and Mars mission capabilities with advanced Long March rockets

Long March 12 set for inaugural launch from Hainan space center

China inflatable space capsule aces orbital test

Tianzhou 7 completes cargo Mission, Tianzhou 8 docks with Tiangong

IRON AND ICE
Pixxel secures additional $24M in Series B funding reaching $60M total

AST SpaceMobile and Vodafone sign long-term agreement for global connectivity

EIB backs Sateliot's IoT Satellite Network with euro 30M loan

Space42 and ICEYE partner to manufacture SAR satellites in UAE

IRON AND ICE
Space-time crystals enable advances in optical materials

Sierra Space expands partnerships to advance microgravity manufacturing

Beyond Gravity supplies thermal protection and navtech for Sentinel-1C

Space Machines expands global partnerships with UK collaboration to address space debris

IRON AND ICE
Towards independent robotic exploration of ocean worlds

A caving expedition highlights the complexities of field research

New planet in Kepler-51 system unveiled with JWST observations

Scientists examine role of iron sulfides in life's origins at early Earth hot springs

IRON AND ICE
NASA marks ten years of Hubble's Outer Planets Survey

Magnetic tornado is stirring up the haze at Jupiter's poles

Uranus moons could hold clues to hidden oceans for future space missions

A clue to what lies beneath the bland surfaces of Uranus and Neptune

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.