. | . |
NASA Glenn technology pumps hope into broken hearts by Staff Writers Cleveland OH (SPX) Mar 13, 2016
Dr. Mark Rodefeld knows the hearts of children. As a pediatric heart surgeon at Indiana University, he's spent decades fixing them. One particular heart problem has consumed much of his research and he has reached out to NASA Glenn Research Center to help him solve it. "About 1,500 children are born every year with a missing ventricle," says Rodefeld. "The numbers sound low, but it's actually the fifth most common problem in those with heart issues." By having half a heart essentially, the body is missing half of its pumping ability to oxygenate blood and circulate it to stay alive. Currently, the best solution is a heart transplant, however, it's a limited option due to donor availability and short-term success. The next best solution, and most commonly used with patients, is a partial fix called the Fontan procedure, which requires three open-heart surgeries to create a passive circulation network to replace the blood pumping function of the missing ventricle. "The children survive, but eventually, inefficiency in circulation due to the low pumping pressure catches up with them in their early adulthood when the remaining part of the heart gets worn out from doing all the work," he says. So Rodefeld came up with an idea to insert a small conical pump, driven by an electrical motor, into an existing Fontan network. This pump would reproduce the pressures and flow coming from the body and head, reducing the wear and tear on the single remaining ventricle and extend the life of the patient. "I knew I wanted to put a bi-conical motor into the cross section of the network, but I needed experts in flywheel technology at NASA Glenn to design and scale it to size," he explains. A team of engineers at Glenn spent two years designing, building and testing a bi-conical heart pump for Rodefeld. Eventually they completed a functional prototype of the bi-conical heart pump to allow for traditional motor operation as well as levitation operation. "Unlike conventional motors, the outside rotor of this pump spins around the inside, which allows for complex fluid pump shapes to be created on the surface of the rotor," says NASA Glenn's David Avanesian, a systems engineer and project manager. "Those shapes then 'grab' blood coming from the body and head, mix it, and then direct it to lungs for oxygenation using the von Karman effect for asymmetrical flow pattern." The Glenn team's extensive design, build and testing led to successful results proving the feasibility of Rodefeld's original idea. And while the size of the motor has been scaled down significantly, engineers need to make it even smaller to fit into the Fontan circulation architecture. Further development would help scale the motor down to the required diameter - the size of a nickel. Over the next few years Rodefeld hopes to engage Glenn engineers in additional development and testing with the goal of advancing this life-saving technology in young patients.
Related Links NASA Tech Benefits Space Medicine Technology and Systems
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |