Scheduled to launch in the early 2030s, DAVINCI will explore Venus with both a spacecraft and a descent probe. DAVINCI's probe will be the first in the 21st century to brave Venus' atmosphere as it descends from above the planet's clouds down to its surface. Two other missions, NASA's VERITAS and ESA's (European Space Agency) Envision, will also explore Venus in the 2030s from the planet's orbit.
The DAVINCI spacecraft will study Venus' clouds and highlands during two flybys. It also will release a spherical probe, about 3 feet wide, that will plunge through the planet's thick atmosphere and corrosive clouds, taking measurements and capturing high-resolution images of the Venusian surface as it descends below the clouds.
Here are some of DAVINCI's coming "firsts" in Venus exploration:
Thought to be ancient continents, tesserae like Alpha Regio may be among the oldest surfaces on the planet, offering scientists access to rocks that are billions of years old.
By studying these rocks from above Alpha Regio, DAVINCI scientists may learn whether ancient Venus had continents and oceans, and how water may have influenced the surface.
With surface temperatures reaching 900 F and air pressure 90 times that of Earth's, Venus' harsh environment makes exploration challenging, while its opaque atmosphere obscures direct views. Typically, scientists rely on radar instruments from Earth or Venus-orbiting spacecraft to study its terrain.
But DAVINCI's probe will descend through the atmosphere and below the clouds for a clear view of the mountains and plains. It will capture images comparable to an airplane's landing view of Earth's surface. Scientists will use the photos to compile 3D maps of Alpha Regio that will provide more detail than ever of Venus' terrain, helping them look for rocks that are usually only made in association with water.
This region is critical because it contains gases and chemical compounds that may originate from Venus' lower clouds, surface, or even subsurface.
For example, sulfur compounds detected here could indicate whether Venusian volcanoes are currently active or were active in the recent past. Noble gases (like helium or xenon), on the other hand, remain chemically inert and maintain stable concentrations, offering invaluable clues about Venus' ancient history, such as the planet's past water inventory.
By comparing Venus' noble gas composition with that of Earth and Mars, scientists can better understand why these planets - despite forming from similar starting materials - evolved into dramatically different worlds.
Moreover, DAVINCI's measurements of isotopes and trace gases in the lower atmosphere will shed light on Venus' water history, from ancient times to the present, and the processes that triggered the planet's extreme greenhouse effect.
The descent probe will be better equipped than previous probes to protect the sensitive electronics inside of it, as it will be lined on the inside with high-temperature, multi-layer insulation - layers of advanced ceramic and silica fabrics separated by aluminum sheets.
Venus' super thick atmosphere will slow the probe's descent, but a parachute will also be released to slow it down further. Most Earth-friendly parachute fabrics, like nylon, would dissolve in Venus' sulfuric acid clouds, so DAVINCI will have to use a different type of material than previous Venus missions did: one that's resistant to acids and five times stronger than steel.
Read More: Old Data Yields New Secrets as NASA's DAVINCI Preps for Venus Trip here
Related Links
DAVINCI - Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging
Venus Express News and Venusian Science
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |