24/7 Space News
VENUSIAN HEAT
NASA DAVINCI Mission's Many 'Firsts' to Unlock Venus' Hidden Secrets
illustration only
NASA DAVINCI Mission's Many 'Firsts' to Unlock Venus' Hidden Secrets
by Lauren Colvin, with Lonnie Shekhtman for GSFC News
Greenbelt MD (SPX) Dec 17, 2024

NASA's DAVINCI - Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging - mission embodies the spirit of innovation and exploration that its namesake, Leonardo da Vinci, was famous for.

Scheduled to launch in the early 2030s, DAVINCI will explore Venus with both a spacecraft and a descent probe. DAVINCI's probe will be the first in the 21st century to brave Venus' atmosphere as it descends from above the planet's clouds down to its surface. Two other missions, NASA's VERITAS and ESA's (European Space Agency) Envision, will also explore Venus in the 2030s from the planet's orbit.

The DAVINCI spacecraft will study Venus' clouds and highlands during two flybys. It also will release a spherical probe, about 3 feet wide, that will plunge through the planet's thick atmosphere and corrosive clouds, taking measurements and capturing high-resolution images of the Venusian surface as it descends below the clouds.

Here are some of DAVINCI's coming "firsts" in Venus exploration:

Exploring Solar System's One-of-a-Kind Terrain

The DAVINCI mission will be the first to closely explore Alpha Regio, a region known as a "tessera." So far found only on Venus, where they make up about 8% of the surface, tesserae are highland regions similar in appearance to rugged mountains on Earth. Previous missions discovered these features using radar instruments, but of the many international spacecraft that dove through Venus' atmosphere between 1966 and 1985, none studied or photographed tesserae.

Thought to be ancient continents, tesserae like Alpha Regio may be among the oldest surfaces on the planet, offering scientists access to rocks that are billions of years old.

By studying these rocks from above Alpha Regio, DAVINCI scientists may learn whether ancient Venus had continents and oceans, and how water may have influenced the surface.

Photographing One of the Oldest Surfaces on Venus

The DAVINCI probe will capture the first close-up views of Alpha Regio with its infrared and optical cameras; these will also be the first photos of the planet's surface taken in more than 40 years.

With surface temperatures reaching 900 F and air pressure 90 times that of Earth's, Venus' harsh environment makes exploration challenging, while its opaque atmosphere obscures direct views. Typically, scientists rely on radar instruments from Earth or Venus-orbiting spacecraft to study its terrain.

But DAVINCI's probe will descend through the atmosphere and below the clouds for a clear view of the mountains and plains. It will capture images comparable to an airplane's landing view of Earth's surface. Scientists will use the photos to compile 3D maps of Alpha Regio that will provide more detail than ever of Venus' terrain, helping them look for rocks that are usually only made in association with water.

Unveiling Secrets of Venus' Mysterious Lower Atmosphere

The DAVINCI mission will be the first to analyze the chemical composition of Venus' lower atmosphere through measurements taken at regular intervals, starting from approximately 90,000 feet above the surface and continuing until just before impact.

This region is critical because it contains gases and chemical compounds that may originate from Venus' lower clouds, surface, or even subsurface.

For example, sulfur compounds detected here could indicate whether Venusian volcanoes are currently active or were active in the recent past. Noble gases (like helium or xenon), on the other hand, remain chemically inert and maintain stable concentrations, offering invaluable clues about Venus' ancient history, such as the planet's past water inventory.

By comparing Venus' noble gas composition with that of Earth and Mars, scientists can better understand why these planets - despite forming from similar starting materials - evolved into dramatically different worlds.

Moreover, DAVINCI's measurements of isotopes and trace gases in the lower atmosphere will shed light on Venus' water history, from ancient times to the present, and the processes that triggered the planet's extreme greenhouse effect.

State-of-the-Art Technology to Study Venus in Detail

Thanks to modern technology, the DAVINCI probe will be able to do things 1980s-era spacecraft couldn't.

The descent probe will be better equipped than previous probes to protect the sensitive electronics inside of it, as it will be lined on the inside with high-temperature, multi-layer insulation - layers of advanced ceramic and silica fabrics separated by aluminum sheets.

Venus' super thick atmosphere will slow the probe's descent, but a parachute will also be released to slow it down further. Most Earth-friendly parachute fabrics, like nylon, would dissolve in Venus' sulfuric acid clouds, so DAVINCI will have to use a different type of material than previous Venus missions did: one that's resistant to acids and five times stronger than steel.

Read More: Old Data Yields New Secrets as NASA's DAVINCI Preps for Venus Trip here

Related Links
DAVINCI - Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging
Venus Express News and Venusian Science

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
VENUSIAN HEAT
A rare Venus solar transit sheds light on exoplanet atmospheres
London, UK (SPX) Dec 06, 2024
In the coming decade, astronomers will begin exploring the atmospheres of Earth- and Venus-sized planets orbiting nearby stars. Despite their physical similarities, Venus and Earth have drastically different atmospheres. This raises the question: could scientists distinguish between these "twin" planets if observed from light-years away? Researchers from the Instituto de Astrofisica e Ciencias do Espaco (IA) tackled this question by simulating Venus as an exoplanet. Their findings, published in *A ... read more

VENUSIAN HEAT
More NASA science and technology set for Lunar delivery with Firefly Aerospace

ISS research on cancer and neurodegenerative therapies returns from Space Station

Vast and SpaceX to launch two human spaceflight missions to ISS

Five Ways to Explore NASA's Portfolio of Technologies with TechPort 4.0

VENUSIAN HEAT
China's CERES 1 rocket launches satellites from sea

SpaceX scrubs launch from Florida, but one lifts off from California

Venus Aerospace ignites VDR2 engine in major milestone

Rocket Lab delivers second spacecraft and completes third for Varda Space Industries

VENUSIAN HEAT
Evidence exists for hidden water reservoirs and rare magmas on ancient Mars

University of Houston scientists solving meteorological mysteries on Mars

NASA Mars Orbiter captures dust-covered InSight Lander

Perseverance blasts past the top of Jezero Crater rim

VENUSIAN HEAT
China's space journey continues apace

Shenzhou XIX crew completes successful spacewalk outside Tiangong station

China boosts Lunar and Mars mission capabilities with advanced Long March rockets

Long March 12 set for inaugural launch from Hainan space center

VENUSIAN HEAT
UNIBAP: Contec Space Optics orders iX10 solution for satellite constellation

Globalstar announces milestone 5G data call on band n53 spectrum

Guerrilla RF achieves 125% growth in satellite communication business

Momentus prices $5M At-The-Market Offering under NASDAQ rules

VENUSIAN HEAT
NASA partners with four companies to expand Near Space Network capabilities

University of Texas at San Antonio establishes center for advancing space technology

Astroscale's ADRAS-J demonstrates key 15-meter proximity to space debris

Transforming education with virtual reality and artificial intelligence

VENUSIAN HEAT
The light of TRAPPIST-1 b analyzed at two wavelengths reveals key insights into its nature

Planet-forming discs persist longer in early Universe environments

ALMA observes dust clump where a new planet may form

Young planet's atmosphere challenges traditional formation models

VENUSIAN HEAT
Texas A and M researchers illuminate the mysteries of icy ocean worlds

Jovian vortex hunter catalog reveals stunning insights into Jupiter's atmosphere

Juno identifies localized magma chambers driving Io's volcanic activity

NASA marks ten years of Hubble's Outer Planets Survey

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.