24/7 Space News
EARLY EARTH
Mysteries of Earth's ancient mass extinction event revealed
Skeleton of the early dinosaur Coelophysis bauri from the Late Triassic. The protracted restructuring of Early Jurassic terrestrial ecosystems coincided with the diversification of dinosaurs.
Mysteries of Earth's ancient mass extinction event revealed
by Staff Writers
Dornsife CA (SPX) Dec 08, 2023

Startling new insights into the catastrophic impact of one of the most devastating events in Earth's history have been revealed by a team led by researchers with the USC Dornsife College of Letters, Arts and Sciences. More than deepening our understanding of the end-Triassic mass extinction, their findings offer critical lessons for today's environmental challenges.

About 200 million years ago, Earth experienced its fourth major mass extinction event. Triggered by a dramatic rise in greenhouse gases due to volcanic activity, the event led to rapid global warming and a significant shift in the planet's biosphere, ending the Triassic period and launching the Jurassic. Many scientists now believe Earth is in the midst of another mass extinction, driven in large part by similar climate changes.

Earth scientists at USC Dornsife took a unique approach to analyzing the impact of this extinction event on both ocean and land ecosystems, using a novel "ecospace framework" method that categorizes animals beyond just their species. It accounts for ecological roles and behaviors - from flying or swimming predators to grazing herbivores and from ocean seafloor invertebrates to soil-dwelling animals on land.

"We wanted to understand not just who survived and who didn't, but how the roles that different species played in the ecosystem changed," said David Bottjer, professor of Earth sciences, biological sciences and environmental studies at USC Dornsife and a study senior author. "This approach helps us see the broader, interconnected ecological picture."

The study - a collaboration between students and faculty at USC Dornsife and the Natural History Museum of Los Angeles County - published today in Proceedings of Royal Society B.

Sea life suffered, but not as much as land animals
The research revealed a stark difference in the impact on marine and terrestrial ecosystems. While both realms suffered greatly, the findings suggest that land-based ecosystems were hit harder and experienced more prolonged instability.

In the oceans, nearly 71% of categories of species, called genera, vanished. Surprisingly, despite this massive loss, the overall structure of marine ecosystems showed resilience. Predators like sharks, molluscs known as ammonites and filter feeders like sponges and brachiopods, though severely affected, eventually bounced back.

On land, the scenario proved much bleaker. A staggering 96% of terrestrial genera went extinct, dramatically reshaping the landscape of life on Earth. Large herbivores like early dinosaurs and various small predators suffered greatly, with significant changes in their populations and roles within the ecosystem.

"This contrast between land and sea tells us about the different ways ecosystems respond to catastrophic events," said co-lead author Alison Cribb, who earned her PhD in geological sciences at USC Dornsife this year and is now at University of Southampton in the U.K. "It also raises important questions about the interplay of biodiversity and ecological resilience."

Climate change clues from ancient catastrophe
The study's findings spark more than just historical interest - they carry significant implications for our current environmental challenges. "Understanding past mass extinctions helps us to predict and possibly soften the impacts of current and future environmental crises," said co-lead author Kiersten Formoso, who is finishing her doctoral studies in vertebrate paleobiology at USC Dornsife and will soon move to a position at Rutgers University.

The parallels between the rapid global warming of the end-Triassic and today's climate change are particularly striking. "We're seeing similar patterns now - rapid climate change, loss of biodiversity. Learning how ecosystems responded in the past can inform our conservation efforts today," Bottjer said.

The research also provides a rare window into the world as it existed over 200 million years ago, he added. "It's like a time machine, giving us a glimpse of life during a period of profound change."

The study's ecospace framework, with its focus on functional roles, offers a fresh perspective on ancient life, according to Frank Corsetti, professor of Earth sciences and chair of USC Dornsife's Department of Earth Sciences. "It's not just about identifying fossils," he said. "It's about piecing together the puzzle of ancient ecosystems and how they functioned."

Future ventures will delve into the past's lessons
As they plan further research, the scientists aim to explore how different species and ecosystems recovered after the extinction, and how these ancient events can parallel current biodiversity loss due to climate change.

Future studies are also planned to examine changes in ecospace dynamics across other periods of profound environmental change in deep time.

"We've just scratched the surface," said Cribb. "There's so much more to learn about how life on Earth responds to extreme changes, and this new ecospace framework offers great potential for helping us do that."

Pandemic sparks unique, collaborative project
The study was conceived, and much of the work done, during the COVID-19 pandemic, when restrictions on many other types of research were in place, said Bottjer. "This produced unique conditions that fostered and led to development and completion of this research involving individuals with expertise across a broad variety of paleobiological fields, from microbes to invertebrates to vertebrates, in marine and terrestrial environments, with everyone working together towards one goal," he said.

Bottjer said Cribb and Formoso initially devised the collaboration with his and Corsetti's supervision and essential contributions from the study's other co-authors.

About the study
Researchers on the study include Cribb, Formoso, Bottjer, Corsetti, James Beech, Shannon Brophy, Victoria Cassady, Amanda Godbold, Philip-peter Maxeiner, and Ekaterina Larina (now at the University of Texas at Austin) of USC Dornsife's Department of Earth Sciences as well as C. Henrik "Hank" Woolley, Paul Byrne, Yun-Hsin Wu of Earth sciences at USC Dornsife and the Natural History Museum of Los Angeles County.

Research Report:Contrasting terrestrial and marine ecospace dynamics after the end-Triassic mass extinction event

Related Links
University of Southern California
Explore The Early Earth at TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARLY EARTH
Study reshapes understanding of mass extinction in Late Devonian era
Bloomington IN (SPX) Dec 08, 2023
Diverse and full of sea life, the Earth's Devonian era - taking place more than 370 million years ago - saw the emergence of the first seed-bearing plants, which spread as large forests across the continents of Gondwana and Laurussia. However, a mass extinction event near the end of this era has long been the subject of debate. Some scientists argue the Late Devonian mass extinction was caused by large-scale volcanic eruptions, causing global cooling. Others argue a mass deoxygenation event caused ... read more

EARLY EARTH
NASA Stennis Achieves Major Milestone for In-Flight Software Mission

Was going to space a good idea

Lost tomato found aboard International Space Station after eight months

Chandrayaan-3 Propulsion Module Successfully Transitions from Lunar to Earth Orbit

EARLY EARTH
Professionals Satellite YPSat Ready for Electromagnetic Compatibility Testing

KAIST Partners with Rocket Lab for NeonSat-1 Launch

NASA identifies probable reason for OSIRIS-REx capsule parachute deployment issue

An incredible pace of SpaceX launch cadence continues with the launch of a Falcon 9 rocket

EARLY EARTH
Mapping Mars: Deep Learning Could Help Identify Jezero Crater Landing Site

How Rocks Say Don't Touch: Sols 4032-4034

Should I Stay or Should I Go Now: Sols 4028-4029

On The Road Again: Sols 4030-4031

EARLY EARTH
CAS Space expands into Guangdong with new rocket engine testing complex

China's Lunar Samples on Display in Macao to Inspire Future Explorers

China Manned Space Agency Delegation Highlights SARs' Role in Space Program

Wenchang Set to Become China's Premier Commercial Space Launch Hub by Next Year

EARLY EARTH
Iridium's New GMDSS Academy to Bolster Safety Training for Maritime Professionals

Embry-Riddle's Innovative Mission Control Lab prepares students for booming space sector

Ovzon and SSC close to sealing satellite communication contract worth $10M

A major boost for space skills and research in North East England

EARLY EARTH
Rogue Space Systems lands inaugural on-orbit service contract

NASA Laser Reflecting Instruments to Help Pinpoint Earth Measurements

Magnetization by laser pulse

CityU develops universal metasurface antenna, advancing 6G communications

EARLY EARTH
Ariel moves from drawing board to construction phase

Digging Deeper to Find Life on Ocean Worlds

Researchers Develop Advanced Algorithm Pandora for Exomoon Hunt

Shedding light on the synthesis of sugars before the origin of life

EARLY EARTH
Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.