. | . |
Mutants in Microgravity by Melissa Gaskill for ISS Science News Houston TX (SPX) Mar 15, 2017
Bacteria may mutate more rapidly in space and scientists theorize patterns of those mutations could help predict how pathogens become resistant to antibiotics. Such predictions could, in turn, be used to develop new drugs to use against those pathogens. Antibiotic resistant pathogens or bacteria is a growing world-wide health concern. The long-term use of many common antibiotics has led to some diseases becoming resistant to drug therapy, which can lead to longer and more complicated illnesses. A proof-of-concept investigation, Nanobiosym Genes, is sending two strains of Staphylococcus aureus bacteria to the International Space Station. Investigators will compare patterns of their mutations to the same organisms grown on Earth in order to refine computational algorithms that predict mutations leading to antibiotic resistance. BioServe Space Technologies at the University of Colorado, Boulder integrated this investigation, which is hosted in four BioCells Habitats and BioServe's Space Automated Bioproduct Lab (SABL). "More than 25 years ago, I had the hypothesis that environment has an effect on how genes mutate and evolve, or express themselves," principal investigator Anita Goel, chairman and scientific director at Nanobiosym Inc in Cambridge, Massachusetts, said. Goel holds a doctorate of philosophy in physics and a doctor of medicine degree. "This investigation allows me to study whether we can make mutations happen by changing the environment. The first step is to understand, everything else being the same, how does microgravity affect the rate and the pattern of mutations? Some data suggest that microgravity speeds up mutations, but we don't know the mechanism of how the environment might play a role." Data from the investigation can define the mutational spectrum. Combining that with algorithms can improve the ability to predict mutations, including those that lead to drug resistance. "We can model which way drug resistance will go and use that to develop better, smarter drugs," Goel said. "A bug can mutate in the presence of a drug and become resistant. We're trying to get ahead of that, predict those mutations, and be ready with a drug when they show up." While this work is starting with infectious diseases, it can potentially be used with anything that has a DNA marker, including cancer. There are two key steps: first, a tool that analyzes DNA or RNA, and second, algorithms to determine the right therapy for the particular disease. Goel's company, Nanobiosym, has developed a device called Gene-RADAR that conducts the first step. "In principle, we can provide real-time diagnosis of any disease with an RNA or DNA signature or genetic fingerprint," she said. "Ultimately, we can build tools to decentralize health care delivery on Earth, to diagnose diseases in real time in a village in Africa or your own home, just with a drop of blood or saliva. Right now those tests can take weeks to months. The device fits in your hand, so we also can put it on the space station to do analysis and research." That real-time analysis has important applications in space. Currently, experiments aboard the space station are brought back to Earth for gene analysis. The device could conduct some analyses in space and send only the data back to Earth. Astronauts could immediately test for DNA life forms in samples collected on Mars, for example, or diagnosis their own infections. Mutant pathogens in space hardly stand a chance.
Washington DC (SPX) Mar 03, 2017 One major mystery about life's origin is how phosphate became an essential building block of genetic and metabolic machinery in cells, given its poor accessibility on early Earth. In a study published on March 9 in the journal Cell, researchers used systems biology approaches to tackle this long-standing conundrum, providing compelling, data-driven evidence that primitive life forms may not have ... read more Related Links BioServe Space Technologies at the University of Colorado Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |