Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Motorised microscopic matchsticks move in water with sense of direction
by Staff Writers
Warwick, UK (SPX) Sep 18, 2013


When the hydrogen peroxide was added the microspheres continued to move in the direction of convection currents or under Brownian motion but the matchsticks were clearly rapidly propelled towards the chemical gradient where the hydrogen peroxide could be found.

Chemists, physicists and computer scientists at the University of Warwick have come together to devise a new powerful and very versatile way of controlling the speed and direction of motion of microscopic structures in water using what they have dubbed chemically 'motorised microscopic matchsticks'.

Before now most research seeking to influence the direction of motion of microscopic components have had to use outside influences such as a magnetic field or the application of light. The University of Warwick team have now found a way to do it by simply adding a chemical in a specific spot and then watching the microscopic matchstick particles move towards it, a phenomenon known as chemotaxis.

The research published in the journal Materials Horizons (RSC) in a paper entitled Chemotaxis of catalytic silica-manganese oxide "matchstick" particles found that by adding a small amount of a catalyst to the head of a set microscopic rods, they could then cause the rods to be propelled towards the location of an appropriate 'chemical fuel' that was then added to a mixture.

For the purposes of this experiment the researchers placed silica-manganese oxide 'heads' on the matchstick material and introduced hydrogen peroxide as the chemical fuel in one particular place.

They placed the 'matchsticks' in a mixture alongside ordinary polymer microspheres.

When the hydrogen peroxide was added the microspheres continued to move in the direction of convection currents or under Brownian motion but the matchsticks were clearly rapidly propelled towards the chemical gradient where the hydrogen peroxide could be found.

The reaction was so strong that more than half of the matchstick particles did not reverse their orientation once over their 90 seconds of travel towards the hydrogen peroxide - even though they were contending with significant convection and Brownian rotation. University of Warwick research chemical engineer Dr Stefan Bon who led the research said:

"We choose high aspect ratio rod-like particles as they are a favourable geometry for chemotactic swimmers, as seen for example in nature in the shapes of certain motile organisms"

"We placed the 'engine' that drives the self-propulsion as a matchstick head on the rods because having the engine in the 'head' of the rod helps us align the rod along the direction of travel, would also show the asymmetry perpendicular to the direction of self-propulsion, and at the same time it maintains rotational symmetry parallel to the plane of motion.

"Our approach is very versatile and should allow for future fabrication of micro-components of added complexity.

"The ability to direct motion of these colloidal structures can form a platform for advances in supracolloidal science, the self-assembly of small objects.

"It may even provide some insight into how rod shapes were selected for self-propelled microscopic shapes in the natural world."

The research has just been published in the journal "Materials Horizons" in a paper entitled Chemotaxis of catalytic silica-manganese oxide "matchstick" particles DOI: 10.1039/c3mh00003f

.


Related Links
University of Warwick
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Molecules pass through nanotubes at size-dependent speeds
Cambridge MA (SPX) Sep 18, 2013
Like a pea going through a straw, tiny molecules can pass through microscopic cylinders known as nanotubes. This could potentially be used to select molecules according to size - for example, to purify water by allowing water molecules to pass through while blocking salt or other substances. Now, researchers at MIT, Seoul University in Korea and Ursinus College in Pennsylvania have found t ... read more


NANO TECH
Chang'e-3 lunar probe sent to launch site

Sixteen Tons of Moondust

Scientists say water on moon may have originated on Earth

Moon landing mission to use "secret weapons"

NANO TECH
Explosive flooding said responsible for distinctive Mars terrain

Upgrade to Mars rovers could aid discovery on more distant worlds

Investigating 'Coal Island' Rock Outcrop

Terramechanics research aims to keep Mars rovers rolling

NANO TECH
Voyager 1 spacecraft reaches interstellar space

Q and A: John Richardson and John Belcher on Voyager 1's crossing and interstellar exploration

Voyager 1 Spotted from Earth with NRAO's VLBA and GBT Telescopes

Iran looks to put Persian cat into space

NANO TECH
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

NANO TECH
ISS Releases a White Stork and Awaits a Swan

Three astronauts back on Earth from ISS: mission control

ISS Crew Completes Spacewalk Preps

Russian cosmonaut set for space station mission resigns

NANO TECH
Russia launches three communication satellites

Arianespace remains the global launch services leader

Russian space official denies report of problem in Soyuz return

Lockheed Martin Atlas V To Launch Morelos-3 ComSat

NANO TECH
ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets

NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

NANO TECH
Yahoo Japan develops 3D search engine-printer

GPS 3 And OCX Satellite Launch and Early Orbit Operations Successfully Demonstrated

'Terminator' polymer that regenerates itself

Northrop Grumman Delivers AEHF Flight 4 Antenna Precision Pointing Unit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement