. 24/7 Space News .
TIME AND SPACE
Most precise measurement of the proton's mass
by Staff Writers
Tokyo, Japan (SPX) Jul 24, 2017


file image only

What is the weight of a proton? Scientists from Germany and Japan have made an important step toward better understanding this fundamental constant. By means of precision measurements on a single proton, they were able to improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton more accurately, the group of physicists from the Max Planck Institute for Nuclear Physics in Heidelberg and RIKEN in Japan performed an important high-precision measurement in a greatly advanced Penning trap system, designed by Sven Sturm and Klaus Blaum from MPI-K, using ultra-sensitive single particle detectors that were partly developed by RIKEN's Ulmer Fundamental Symmetries Laboratory.

The proton is the nucleus of the hydrogen atom and one of the basic building blocks of all other atomic nuclei. Therefore, the proton's mass is an important parameter in atomic physics: it is one of the factors that affect how the electrons move around the atomic nucleus. This is reflected in the spectra, i.e., the light colours (wavelengths) that atoms can absorb and emit again.

By comparing these wavelengths with theoretical predictions, it is possible to test fundamental physical theories. Further, precise comparisons of the masses of the proton and the antiproton may help in the search for the crucial difference - besides the reversed sign of the charge - between matter and antimatter.

Penning traps are well-proven as suitable "scales" for ions. In such a trap, it is possible to confine, nearly indefinitely, single charged particles such as a proton, for example, by means of electric and magnetic fields.

Inside the trap, the trapped particle performs a characteristic periodic motion at a certain oscillation frequency. This frequency can be measured and the mass of the particle calculated from it. In order to reach the targeted high precision, an elaborate measurement technique was required.

The carbon isotope 12C with a mass of 12 atomic mass units is defined as the mass standard for atoms. "We directly used it for comparison", says Sven Sturm. "First we stored each one proton and one carbon ion (12C6+) in separate compartments of our Penning trap apparatus, then transported each of the two ions into the central measurement compartment and measured its motion."

From the ratio of the two measured values the group obtained the proton's mass directly in atomic units. The measurement compartment was equipped with specifically developed purpose-built electronics. Andreas Mooser of RIKEN's Fundamental Symmetries Laboratory explains its function: "It allowed us to measure the proton under identical conditions as the carbon ion despite its about 12-fold lower mass and 6-fold smaller charge."

The resulting mass of the proton, determined to be 1.007276466583(15)(29) atomic mass units, is three times more precise than the presently accepted value. The numbers in parentheses refer to the statistical and systematic uncertainties, respectively.

Intriguingly, the new value is significantly smaller than the current standard value. Measurements by other authors yielded discrepancies with respect to the mass of the tritium atom, the heaviest hydrogen isotope (T = 3H), and the mass of light helium (3He) compared to the "semiheavy" hydrogen molecule HD (D = 2H, deuterium, heavy hydrogen).

"Our result contributes to solving this puzzle, since it corrects the proton's mass in the proper direction", says Klaus Blaum.

Florian Kohler-Langes of MPIK explains how the researchers intend to further improve the precision of their measurement: "In the future, we will store a third ion in our trap tower. By simultaneously measuring the motion of this reference ion, we will be able to eliminate the uncertainty originating from fluctuations of the magnetic field." The work was published in Physical Review Letters.

Research paper

TIME AND SPACE
Spontaneous system follows rules of equilibrium
Chicago IL (SPX) Jul 18, 2017
Scientists have long known the ins and outs of equilibrium thermodynamics. Systems in equilibrium - a stable state of unchanging balance - are governed by a neat set of rules, making them predictable and easy to explore. "In equilibrium, there is a fantastic framework that is very well tested. There are almost no assumptions," said Northwestern Engineering's Erik Luijten. "The problem is that mo ... read more

Related Links
RIKEN
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Counting calories in space

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

Dutch project tests floating cities to seek more space

Creating Trends in Space: An Interview with NanoRacks CEO Jeffrey Manber

TIME AND SPACE
Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

Spiky ferrofluid thrusters can move satellites

Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

TIME AND SPACE
Mars surface 'more uninhabitable' than thought: study

Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

TIME AND SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

TIME AND SPACE
Iridium Poised to Make Global Maritime Distress and Safety System History

100M Pound boost for UK space sector

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

TIME AND SPACE
Nature-inspired material uses liquid reinforcement

Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Signature analysis of single molecules using their noise signals

TIME AND SPACE
Big, shape-shifting animals from the dawn of time

Hidden Stars May Make Planets Appear Smaller

Astronomers Track the Birth of a 'Super-Earth'

Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation

TIME AND SPACE
Juno Completes Flyby over Jupiter's Great Red Spot

NASA spacecraft to fly over Jupiter's Great Red Spot

New Mysteries Surround New Horizons' Next Flyby Target

Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.