![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Brooks Hays Washington DC (UPI) Apr 02, 2018
Using the Hubble Space Telescope, astronomers have observed the most distant star yet discovered. Astronomers were trying to watch a gravitationally lensed supernova called Refsdal in the distant universe when they noticed an unexpected point source. The source turned out to be the universe's most distant star. Astronomers dubbed it Lensed Star 1. The star is located 8.3 billion light-years away in the same galaxy as the Refsdal supernova. The light imaged by Hubble showcases the star as it existed just 4.4 billion years after the Big Bang and the birth of the universe. Spectral analysis conducted using Hubble's instruments suggests the LS1 is a B-type supergiant star. Such stars burn twice as hot as the sun, between 11,000 and 14,000 degrees Celsius, giving them a bright blue appearance. Bright or not, astronomers needed help to see LS1. "Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble," Patrick Kelly, an astronomer at the University of Minnesota, said in a news release. "This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions." On its path from the distant universes to the lens of the Hubble Space Telescope, LS1's light was magnified by both the gravity of the surrounding galaxy cluster itself and the gravity of a high-mass compact object inside the cluster. The phenomenon is known as gravitational lensing. "The discovery of LS1 allows us to gather new insights into the constituents of the galaxy cluster," said Steven Rodney, an astronomer at the University of South Carolina. "We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole." By studying LS1, scientists hope to learn more about neutron stars and black holes inside the galaxy cluster MACS J1149-2223. Because these dark energy entities play a predominant role in the birth and evolution of galactic structures, researchers are hopeful that LS1 will offer clues to the nature dark matter and dark energy. "If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1," Kelly said. "Our observations do not favor the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the sun." In followup observations, astronomers discovered a second micro-lensed image of LS1. "We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice," said Jose Diego, a researcher at the Astronomical Institute of the Canary Islands. "We assume that the light from the second image has been deflected by another moving massive object for a long time -- basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible."
![]() ![]() Arrested development: Hubble finds relic galaxy close to home Washington DC (SPX) Mar 14, 2018 Astronomers have put NASA's Hubble Space Telescope on an Indiana Jones-type quest to uncover an ancient "relic galaxy" in our own cosmic backyard. The very rare and odd assemblage of stars has remained essentially unchanged for the past 10 billion years. This wayward stellar island provides valuable new insights into the origin and evolution of galaxies billions of years ago. The galaxy, NGC 1277, started its life with a bang long ago, ferociously churning out stars 1,000 times faster than s ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |