Subscribe free to our newsletters via your
. 24/7 Space News .




ICE WORLD
Most comprehensive projections for West Antarctica's future revealed
by Staff Writers
Munich, Germany (SPX) Aug 19, 2015


This is a simulation showing the major glaciers of the Amundsen Sea Embayment over three centuries of sustained retreat. The colours show the ice flow speed in metres per year. The grounding line, which separates the grounded (resting on bedrock) ice from floating ice, is represented in bright blue. Image courtesy Cornford et al., The Cryosphere, 2015. Watch a video on the research here.

A new international study is the first to use a high-resolution, large-scale computer model to estimate how much ice the West Antarctic Ice Sheet could lose over the next couple of centuries, and how much that could add to sea-level rise. The results paint a clearer picture of West Antarctica's future than was previously possible. The study is published today (18 August) in The Cryosphere, an open access journal of the European Geosciences Union (EGU).

"The IPCC's [Intergovernmental Panel on Climate Change] 4th and 5th Assessment Reports both note that the acceleration of West Antarctic ice streams in response to ocean warming could result in a major contribution to sea-level rise, but that models were unable to satisfactorily quantify that response," says Stephen Cornford, a research assistant at the University of Bristol, UK and lead-author of the study.

"The novel aspect of our work is the use of a high-resolution ice-sheet model over a larger area and longer time-scale than previously attempted. Much like a higher-resolution digital camera transforms a blur into a flock of birds, higher resolution in a computer model often helps to capture details of the physics involved which may be crucial to the broad picture," says co-author Dan Martin from the Lawrence Berkeley National Laboratory in California, US.

West Antarctica is one of the fastest warming regions on Earth and its ice sheet has been stage to dramatic thinning in recent years. The West Antarctic Ice Sheet (WAIS) is out of balance because it is losing significant amounts of ice to the ocean, with the losses not being offset by snowfall. The lost ice, drained by the ice sheet's several ice streams, amounts to a significant contribution to sea-level rise, which is expected to increase in the future.

Cornford, Martin, and a team of researchers from around the world have now estimated how much the WAIS could contribute to global sea-level rise over the next couple of centuries. Their high-resolution, computationally demanding simulations capture future changes in West Antarctica with increased accuracy compared to previous models. The results reflect uncertainty in future greenhouse gas emissions, snowfall and ocean circulation, but the choice of a high-resolution model allowed the researchers to reduce the numerical error that often plagues ice-flow models.

"We expect future change in the West Antarctic Ice Sheet to be dominated by thinning in the Amundsen Sea Embayment, just as it is today, until at least the 22nd century. But other regions of West Antarctica could thin to a similar extent if the ocean warms sufficiently," explains Cornford.

In their most extreme simulation, where the ice shelves progressively disintegrate over the next century, most of the major ice streams retreat by hundreds of kilometres. The WAIS as a whole would contribute some 80,000 cubic kilometres of lost ice to sea-level rise by 2100 and 200,000 cubic kilometres by 2200.

This corresponds to a 20 cm increase in global sea level by the end of this century - sufficient to fill the Caspian Sea - and close to 50 cm by 2200. While these amounts would be enough to threaten low-lying cities and countries, the researchers point out this is an extreme scenario.

"There are many climate processes lying between the direct consequences of greenhouse-gas emissions and the regional ocean warming used as forcing in the modelling reported in The Cryosphere, many of which are poorly understood," explains co-author Tony Payne, a professor at the University of Bristol. "It would therefore be premature to attach a likelihood to any particular retreat scenario; however it is useful to quantify the magnitude of sea-level rise in some of these more extreme cases."

The researchers wanted to find out how the ice sheet would respond to both modest and extreme future warming. "We subjected an ice dynamics model to a range of ocean and atmospheric changes, ranging from no change at all, through the future changes projected by state-of-the-art ocean and atmosphere models, to extreme changes intended to study the upper reaches of future sea-level rise," explains Cornford.

"The research involved many different steps as the results of global climate models were fed into regional models of the Antarctic atmosphere and ocean, whose results were in turn used to force the ice-sheet model in this study," Payne adds.

This comprehensive high-resolution study is a significant improvement from previous calculations, which were lower in resolution or scale, allowing researchers to make more accurate predictions about West Antarctica's future.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
European Geosciences Union
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ICE WORLD
Glacial meltwater in Antarctica nourishes feeding 'hot spots'
Palo Alto, Calif. (UPI) Aug 11, 2015
Rising temperatures and shrinking polar ice cpas are worrisome longterm trends for most species, including fish and marine mammals. But sea life also benefits tremendously from nutrients-rich runoff streaming off melting glaciers. Glacial meltwater carries concentrations of iron from the interior ice sheets to the gaps in the sea ice and the surrounding polar waters. The deposited iron ... read more


ICE WORLD
LADEE spacecraft finds neon in lunar atmosphere

Crowdfunding raises $720,000 to restore Neil Armstrong spacesuit

Japanese Company to Advertise Soft Drink on Moon

From a million miles away, NASA camera shows moon crossing face of Earth

ICE WORLD
Mars Rover Moves Onward After 'Marias Pass' Studies

NASA can send your name to Mars

How Much Contamination is Okay on Mars 2020 Rover?

One Decade after Launch, Mars Orbiter Still Going Strong

ICE WORLD
What's for Dinner? BioFood!

Springer retracts 64 scientific papers with fake peer reviews

Going Up! Elevator to Space Just Became Real

Orion Begins Critical Design Review Milestone

ICE WORLD
China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

ICE WORLD
NASA extends Raytheon contract for facilities that support human spaceflight

Japan sends cargo to International Space Station

NanoRacks External Platform, CubeSats, Launched to ISS on Japanese HTV-5

Stork Set to Make Special ISS Delivery

ICE WORLD
AAC and Garvey Spacecraft Deliver First Rocket Motor to Kodiak

ARSAT-2 arrives in French Guiana

Success for 2 long-time Arianespace customers: Eutelsat and Intelsat

Arianespace integrates EUTELSAT 8 West B and Intelsat 34 for Ariane 5 launch

ICE WORLD
Planetary pebbles were building blocks for the largest planets

A new model of gas giant planet formation

Solar System formation don't mean a thing without that spin

Gemini-discovered world is most like Jupiter

ICE WORLD
India to Set Up Space Research and Satellite Monitoring Station in Fiji

Connected sports shirt promises 'smart,' at a price

Matter wave technique that could cool molecules

Dancing droplets launch themselves from thin fibers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.