. | . |
Molecular swarm rearranges surface structures atom by atom by Staff Writers Muenster, Germany (SPX) Oct 08, 2020
The surface of metals plays a key role in many technologically relevant areas, such as catalysis, sensor technology and battery research. For example, the large-scale production of many chemical compounds takes place on metal surfaces, whose atomic structure determines if and how molecules react with one another. At the same time, the surface structure of a metal influences its electronic properties. This is particularly important for the efficiency of electronic components in batteries. Researchers worldwide are therefore working intensively on developing new kinds of methods to tailor the structure of metal surfaces at the atomic level. A team of researchers at the University of Munster, consisting of physicists and chemists and led by Dr. Saeed Amirjalayer, has now developed a molecular tool which makes it possible, at the atomic level, to change the structure of a metal surface. Using computer simulations, it was possible to predict that the restructuring of the surface by individual molecules - so-called N-heterocyclic carbenes - takes place similar to a zipper. During the process, at least two carbene molecules cooperate to rearrange the structure of the surface atom by atom. The researchers could experimentally confirm, as part of the study, this "zipper-type" mechanism in which the carbene molecules work together on the gold surface to join two rows of gold atoms into one row. The results of the work have been published in the journal "Angewandte Chemie International Edition". In earlier studies the researchers from Munster had shown the high stability and mobility of carbene molecules at the gold surface. However, no specific change of the surface structure induced by the molecules could previously be demonstrated. In their latest study, the researchers proved for the first time that the structure of a gold surface is modified very precisely as a result of cooperation between the carbene molecules. "The carbene molecules behave like a molecular swarm - in other words, they work together as a group to change the long-range structure of the surface," Saeed Amirjalayer explains. "Based on the 'zipper' principle, the surface atoms are systematically rearranged, and, after this process, the molecules can be removed from the surface." The new method makes it possible to develop new materials with specific chemical and physical properties - entirely without macroscopic tools. "In industrial applications often macroscopic tools, such presses or rollers, are used," Amirjalayer continues. "In biology, these tasks are undertaken by certain molecules. Our work shows a promising class of synthesized molecules which uses a similar approach to modify the surface." The team of researchers hopes that their method will be used in future to develop for examples new types of electrode or to optimize chemical reactions on surfaces.
Hunting for the lowest known nuclear-excited state Mainz, Germany (SPX) Oct 07, 2020 Nuclear clocks could make our time measurement even more accurate than atomic clocks. The key to this lies in thorium-229, an atomic nucleus whose lowest excited state has very low energy. A research team from the Kirchhoff Institute for Physics at the University of Heidelberg, TU Wien, Johannes Gutenberg University Mainz (JGU), the Helmholtz Institute Mainz (HIM), and GSI Helmholtzzentrum in Darmstadt has now succeeded in measuring this low energy. Using an extremely accurate detector, it was pos ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |