. 24/7 Space News .
ENERGY TECH
Molecular paddlewheels propel sodium ions through next-generation batteries
by Staff Writers
Durham NC (SPX) Jan 13, 2022

Illustration showing the atomic structure of solid-electrolyte Na3PS4 with channels for Na+ ions (purple) between PS43- polyanions (orange). The black arrows denote the coupled motions of traveling sodium ions with the group vibrations of the host structure, involving twists of tetrahedral polyanions similar to that of a paddlewheel.

Materials scientists at Duke University have revealed paddlewheel-like molecular dynamics that help push sodium ions through a quickly evolving class of solid-state batteries. The insights should guide researchers in their pursuit of a new generation of sodium-ion batteries to replace lithium-ion technology in a wide range of applications such as data centers and home energy storage.

The results appeared online November 10 in the journal Energy and Environmental Science.

In general, rechargeable batteries work by moving electrons through external wires from one side to the other and back again. To balance this transfer of energy, atoms with an electric charge called ions, such as lithium ions, move within the battery through a chemical substance called an electrolyte. How quickly and easily these ions can make their journey plays a key role in how fast a battery can charge and how much energy it can provide in a given amount of time.

"Most researchers still tend to focus on how the crystalline framework of a solid electrolyte might allow ions to quickly pass through an all-solid battery," said Olivier Delaire, associate professor of mechanical engineering and materials science at Duke. "In the last few years, the field has begun to realize that the molecular dynamics of how the atoms can jump around are important as well."

Lithium ion batteries have long been the dominant technology used for most all commercial applications requiring energy storage, from tiny smart watches to gigantic data centers. While they have been extremely successful, lithium ion batteries have several drawbacks that make new technologies more attractive for certain applications.

For example, lithium ion batteries have a liquid electrolyte inside that, while extremely efficient at allowing lithium ions to travel quickly through, is also extremely flammable. As the market continues to grow exponentially, there are worries about being able to mine enough lithium from the relatively limited global deposits. And some of the rare earth elements used in their construction - such as cobalt and manganese - are even rarer and are only mined in a few locations around the world.

Many researchers believe that alternative technologies are necessary to supplement the skyrocketing demand for energy storage, and one of the leading candidates is sodium-ion batteries. While not as energetically dense or fast as their lithium-ion batteries, the technology has many potential advantages. Sodium is much cheaper and more abundant than lithium.

The materials required for their constituent parts are also much more commonly available. And by replacing the liquid electrolyte with a solid-state electrolyte material instead, researchers can build all-solid batteries that promise to be more energy dense, more stable and less likely to ignite than currently available rechargeable batteries.

These advantages lead researchers to consider sodium-ion batteries a potentially viable replacement for lithium-ion batteries in applications that are not as constrained by space and speed requirements as thin smart phones or light electric vehicles. For example, large data centers or other buildings that require large amounts of energy over a long period of time are good candidates.

"This is generally a very active area of research where people are racing toward the next generation of batteries," said Delaire. "However, there is not a sufficiently strong fundamental understanding of what materials work well at room temperature or why. We're providing insights into the atomistic dynamics that allow one popular candidate to transport its sodium ions quickly and efficiently."

The material studied in these experiments is a sodium thiophosphate, Na3PS4. Researchers already knew that the crystalline structure of the phosphorus and sulfur atoms creates a one-dimensional tunnel for sodium ions to travel through. But as Delaire explains, nobody had looked to see whether the movement of neighboring atoms also plays an important role.

To find out, Delaire and his colleagues took samples of the material to Oak Ridge National Laboratory. By bouncing neutrons off the atoms at extremely fast rates, researchers captured a series of snapshots of the atoms' precise motions. The results showed that the pyramid-shaped phosphorus-sulfur PS4 units that frame the tunnels twist and turn in place and almost act as paddlewheels that help the sodium ions move through.

"This process has been theorized before, but the arguments are usually made in a cartoonish way," said Delaire. "Here we show what the atoms are actually doing and show that, while there's a bit of truth to this cartoon, it's also much more complex."

The researchers confirmed the neutron-scattering results by computationally modeling the atomic dynamics at the National Energy Research Scientific Computing Center. The team used a machine learning approach to capture the potential energy surface in which the atoms vibrate and move. By not needing to recalculate the quantum mechanical forces at every point in time, the approach sped up the calculations by several orders of magnitude.

With the new insights into the atomistic dynamics of one sodium-ion electrolyte and the new approach to quickly modeling their behavior, Delaire hopes the results will help push the field forward more quickly, from Na3PS4 and beyond.

"Even though this is one of the leading materials because of its high ionic conductivity, there's already a slightly different version being pursued that uses antimony instead of phosphorus," Delaire said. "But despite the speed at which the field is moving, the insights and tools we present in this paper should help researchers make better decisions about where to go next."

Research Report: "Fast Na Diffusion and Anharmonic Phonon Dynamics in Superionic Na3PS4"


Related Links
Duke University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Chile awards two multi-million dollar lithium contracts
Santiago (AFP) Jan 12, 2022
Chile shunned two of the world's biggest lithium producers when awarding extraction contracts worth a total of $121 million to a local firm and a Chinese company, the minerals ministry said Wednesday. China's BYD Chile SpA and Chile's Servicios y Operaciones Mineras del Norte S.A. were awarded the right to extract 80,000 tons of lithium each, although the ministry did not say where. American firm Albemarle, which produces 19 percent of the world's lithium, and Chile's SQM, which extracts 17 perc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
NASA's newest astronaut class begins training in Houston

Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

ENERGY TECH
Virgin Orbit air drops rocket carrying 7 satellites

$10M elevates UArizona hypersonics facilities to national prominence

SpaceX launches 105 satellites from Florida

Ride into space on Vega-C secured for FLEX and Altius

ENERGY TECH
Steady driving towards ExoMars launch

Sols 3355-2256: Closer to the Prow

Widespread megaripple activity on Martian North Pole

Sol 3354: Tantalizingly Out of Reach

ENERGY TECH
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

ENERGY TECH
Planet to launch 44 SuperDove satellites on SpaceX's Falcon 9

Advertising plays key role in satellite TV success, study shows

Euroconsult predicts highest government space budgets in decades despite Covid

Loft Orbital extends production agreement with LeoStella

ENERGY TECH
New DAF software factory aims to digitally transform AFRL

US bill aims to end China's 'chokehold' on America's rare earth supplies

Chile court freezes multi-million dollar lithium deal

US artist and London gallery launch first exhibition on Fortnite

ENERGY TECH
Cheops reveals a rugby ball-shaped exoplanet

From dust to planet: how gas giants form

Eccentric exoplanet discovered

Elusive atmospheric molecule produced in a lab for the 1st time by UH

ENERGY TECH
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.