24/7 Space News
TIME AND SPACE
Milestone for novel atomic clock
An artist's rendition of the scandium nuclear clock: scientists used the X-ray pulses of the European XFEL to excite in the atomic nucleus of scandium the sort of processes that can generate a clock signal - at an unprecedented precision of one second in 300 billion years. Credit: European XFEL/Helmholtz Institute Jena, Tobias Wustefeld/Ralf Rohlsberger
Milestone for novel atomic clock
by Staff Writers
Berlin, Germany (SPX) Oct 02, 2023

An international research team has taken a decisive step toward a new generation of atomic clocks. At the European XFEL X-ray laser, the researchers have created a much more precise pulse generator based on the element scandium, which enables an accuracy of one second in 300 billion years - that is about a thousand times more precise than the current standard atomic clock based on caesium. The team presents its success in the journal Nature.

Atomic clocks are currently the world's most accurate timekeepers. These clocks have used electrons in the atomic shell of chemical elements, such as caesium, as a pulse generator in order to define the time. These electrons can be raised to a higher energy level with microwaves of a known frequency. In the process, they absorb the microwave radiation.

An atomic clock shines microwaves at caesium atoms and regulates the frequency of the radiation such that the absorption of the microwaves is maximised; experts call this a resonance. The quartz oscillator that generates the microwaves can be kept so stable with the help of resonance that caesium clocks will be accurate to within one second within 300 million years.

Crucial to the accuracy of an atomic clock is the width of the resonance used. Current caesium atomic clocks already use a very narrow resonance; strontium atomic clocks achieve a higher accuracy with only one second in 15 billion years. Further improvement is practically impossible to achieve with this method of electron excitation.

Therefore, teams around the world have been working for several years on the concept of a "nuclear" clock, which uses transitions in the atomic nucleus as the pulse generator rather than in the atomic shell. Nuclear resonances are much more acute than the resonances of electrons in the atomic shell, but also much harder to excite.

At the European XFEL the team could now excite a promising transition in the nucleus of the element scandium, which is readily available as a high-purity metal foil or as the compound scandium dioxide. This resonance requires X-rays with an energy of 12.4 kiloelectronvolts (keV, which is about 10,000 times the energy of visible light) and has a width of only 1.4 femtoelectronvolts (feV).

This is 1.4 quadrillionths of an electronvolt, which is only about one tenth of a trillionth of the excitation energy (10-19). This makes an accuracy of 1:10,000,000,000,000 possible. "This corresponds to one second in 300 billion years," says DESY researcher Ralf Rohlsberger, who works at the Helmholtz Institute Jena, a joint facility of the GSI Helmholtz Centre for Heavy Ion Research, the Helmholtz Zentrum Dresden-Rossendorf (HZDR), and DESY.

Atomic clocks have numerous applications that benefit from improved accuracy, such as precise positioning using satellite navigation. "The scientific potential of the scandium resonance was identified more than 30 years ago," reports the experiment's project leader, Yuri Shvyd'ko of Argonne National Laboratory in the United States. "Until now, however, no X-ray source was available that shone brightly enough within the narrow 1.4 feV line of scandium," says Anders Madsen, leading scientist at the MID experiment station at the European XFEL, where the experiment took place.

"That only changed with X-ray lasers like the European XFEL." In the groundbreaking experiment, the team irradiated a 0.025-millimetre-thick scandium foil with X-ray laser light and was able to detect a characteristic afterglow emitted by the excited atomic nuclei, which is clear evidence of scandium's extremely narrow resonance line.

Also important for the construction of atomic clocks is the exact knowledge of the resonance energy - in other words, the energy of the X-ray laser radiation at which the resonance occurs. Sophisticated extreme noise suppression and high-resolution crystal optics allowed the value of the scandium resonance energy in the experiments to be determined to within five digits of the decimal point at 12.38959 keV, which is 250 times more accurate than before.

"The precise determination of the transition energy marks a significant progress," emphasizes the head of the data analysis, Jorg Evers of the Max Planck Institute for Nuclear Physics in Heidelberg. "The exact knowledge of this energy is of enormous importance for the realisation of an atomic clock based on scandium." The researchers are now exploring further steps toward realising such an atomic nuclear clock.

"The breakthrough in resonant excitation of scandium and the precise measurement of its energy opens new avenues not only for nuclear clocks, but also for ultrahigh-precision spectroscopy and precision measurement of fundamental physical effects," Shvyd'ko explains. Olga Kocharovskaya of Texas A and M University in the U.S., initiator and leader of the project funded by the National Science Foundation, adds: "For example, such a high accuracy could allow gravitational time dilation to be probed at sub-millimetre distances. This would allow studies of relativistic effects on length scales that were inaccessible so far."

The work involved researchers from Argonne National Laboratory in the U.S., the Helmholtz Institute Jena, Friedrich Schiller University Jena, Texas A and M University in the U.S., the Max Planck Institute for Nuclear Physics in Heidelberg, the Polish synchrotron radiation source SOLARIS in Krakow, the European XFEL, and DESY.

The European XFEL in the Hamburg area is an international research facility of superlatives: 27,000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources open up completely new opportunities for science. Research groups from around the world are able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional "photos" of the nanoworld, "film" chemical reactions, and study processes such as those occurring deep inside planets.

The operation of the facility is entrusted to European XFEL, a non-profit company that cooperates closely with its main shareholder, the research centre DESY, and other organisations worldwide. European XFEL has a workforce of 500 employees and started user operation September 2017. At present, 12 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, Switzerland, and the United Kingdom.

DESY is one of the world's leading particle accelerator centres and investigates the structure and function of matter - from the interaction of tiny elementary particles and the behaviour of novel nanomaterials and vital biomolecules to the great mysteries of the universe. The particle accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools.

They generate the most intense X-ray radiation in the world, accelerate particles to record energies and open up new windows onto the universe. DESY is a member of the Helmholtz Association, Germany's largest scientific association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

Research Report:Resonant X-ray excitation of the nuclear clock isomer 45Sc

Related Links
Deutsches Elektronen-Synchrotron DESY
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Earth's day was a constant 19.5 hours for over a billion years
Toronto, Canada (SPX) Jul 06, 2023
A team of astrophysicists at the University of Toronto (U of T) has revealed how the slow and steady lengthening of Earth's day caused by the tidal pull of the moon was halted for over a billion years. They show that from approximately two billion years ago until 600 million years ago, an atmospheric tide driven by the sun countered the effect of the moon, keeping Earth's rotational rate steady and the length of day at a constant 19.5 hours. Without this billion-year pause in the slowing of ... read more

TIME AND SPACE
Law professor calls for ethical approach to human experiments in space

Ethics rules needed for human research on commercial spaceflights, panel says

Ethical guidelines needed before human research in commercial spaceflight is ready for liftoff

Global team recommends ethical rules for human research in commercial spaceflight

TIME AND SPACE
Vega-C Zefiro40 Test: Independent Enquiry

Record-breaking launch of SpaceX's Starlink satellites

Maritime Launch unveils commercial suborbital program at Spaceport Nova Scotia

Blue Origin to remain grounded for now following crash probe

TIME AND SPACE
Light rocks on deck, gray rocks in the hole: Sols 3966-3697

Dust removal delayed: Sols 3962-3963

Double DRT for a Soliday: Sols 3964-3965:

NASA's Perseverance captures dust-filled Martian whirlwind

TIME AND SPACE
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

TIME AND SPACE
Momentus announces $4M direct offering priced at-the-market under Nasdaq rules

Sierra Space increases total investment to $1.7B with $290M Series B Funding

Arlington Capital Partners to acquire Exostar from Thoma Bravo

Intelsat expands Brazil infrastructure, delivers new services

TIME AND SPACE
US slaps Satellite TV provider with first-ever space debris fine

German tech factory reveals antenna prototype-ngVLA will open a new window into the Universe

Data storage of tomorrow

US TV provider given first-ever space debris fine

TIME AND SPACE
A newly identified virus emerges from the deep

James Webb telescope captures planet-like structures in Orion Nebula

Scientists develop method of identifying life on other worlds

Study sheds new light on strange lava worlds

TIME AND SPACE
Plot thickens in the hunt for a ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Webb finds carbon source on surface of Jupiter's moon Europa

Hidden ocean the source of CO2 on Jupiter moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.