![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Wurzburg, Germany (SPX) Dec 27, 2017
Atoms and molecules can be made to emit light particles (photons). However, without external intervention this process is inefficient and undirected. If it was possible to influence the process of photon creation fundamentally in terms of efficiency and emission direction, new technical possibilities would be opened up such as tiny, multifunctional light pixels that could be used to build three-dimensional displays or reliable single-photon sources for quantum computers or optical microscopes to map individual molecules. Nanometre-sized "optical antennas" are a well-known approach. They are capable of sending photons in a specific direction with high efficiency. The idea goes back to Nobel Laureate Richard P. Feynman who envisioned nanoscale antennas during a speech at the California Institute of Technology already in 1959. Feynman was way ahead of his time, but he triggered a rapid development in nanotechnology which enables building antenna for visible light today. The dimensions and structural details of such antennas can be controlled precisely at a size of around 250 nanometres.
The deficits of existing light antennas The antennas used there are usually made of specially shaped metal wires and metal rod arrays due to the wavelengths in the centimetre range. It is in fact possible to construct antennas for light waves using metal nanorods to influence the creation and propagation of photons, but the analogy between radio waves and light waves is limited. While macroscopic radio antennas have a high-frequency generator connected to the antenna via cable, the link at the nanometre scale of a light wave length has to be contactless. But atoms and molecules that act as photon sources do not feature connecting cables to hook them up to an optical antenna. It is this major difference, combined with a number of other problems that are due to the high frequency of light, that has made it impossible so far to produce and subsequently control photons with optical antennas in a satisfactory manner. Physicists from Julius-Maximilians-Universitat (JMU) Wurzburg in Bavaria, Germany, have now solved this problem and established a set of rules for optimized optical antennas which were published in the prestigious journal Physical Review Letters. The new rules could help build antennas for light so that both the photons' birth and their subsequent propagation can be controlled precisely, at least theoretically, according to Thorsten Feichtner, a researcher at JMU's Institute of Physics in Professor Bert Hecht's team.
The principle behind the new antennas The novel antennas for light built with the help of these new rules extract far more photons from an emitter than previous antenna types derived from radio technology.
![]() Munich, Germany (SPX) Dec 04, 2017 Physicists from Ludwig-Maximilians-Universitaet (LMU) in Munich have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms. The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a ... read more Related Links University of Wurzburg Stellar Chemistry, The Universe And All Within It
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |