. 24/7 Space News .
IRON AND ICE
Meteorites show transport of material in early solar system
by Staff Writers
Davis CA (SPX) Sep 09, 2020

A section of the Allende meteorite from Mexico. This type of meteorite is made of many smaller particles, or chondrules. They represent the oldest material in the solar system. New analysis of the Allende meteorite shows that material from close to the Sun mixed with material in the outer solar system as the planets were formed.

New studies of a rare type of meteorite show that material from close to the Sun reached the outer solar system even as the planet Jupiter cleared a gap in the disk of dust and gas from which the planets formed. The results, published this week in Proceedings of the National Academy of Sciences, add to an emerging understanding of how our Solar System formed and how planets form around other stars.

The consensus theory on how planets form is that they accrete from a disk of dust and gas that rotates around a new-formed star. Evidence for the composition of this protoplanetary disk in our own solar system comes from chondrites, a type of meteorite made up of smaller particles, or chondrules, that collected together like a cosmic dust bunny.

"If we understand transport, we can understand the properties of the disk and infer how the planets were built," said Qingzhu Yin, professor of earth and planetary sciences at the University of California, Davis and coauthor on the paper.

The material in chondrites is extremely old, representing leftover dust and debris that from the very early solar system. Further evidence comes from rocks from the Earth and Moon and samples of cosmic dust and comet material collected by the Stardust mission and other space probes.

Researchers can work out approximately where and when these meteorites formed by measuring the ratios of isotopes of elements such as oxygen, titanium and chromium within them.

Previous work by Yin's laboratory and others showed that meteorites fall into two broad groups by composition. Carbonaceous meteorites are thought to have originated in the outer solar system. Non-carbonaceous meteorites formed from the disk closer to the sun where carbon-based and other volatile compounds were baked away.

Why was there not more mixing, if all the planets formed from the same protoplanetary disk? The explanation is that as Jupiter formed earlier, it plowed a gap in the disk, creating a barrier to the movement of dust, Yin said. Astronomers using the ALMA radio telescope in Chile have observed the same phenomenon in protoplanetary disks around other stars.

Crossing the Jupiter gap
Yet some meteorites seem to be exceptions to this general rule with a wider mixture of components.

Yin, UC Davis research scientist Curtis Williams, and their collaborators carried out a detailed study of isotopes from 30 meteorites. They confirmed that they fell into two distinct groups: the non-carbonaceous chondrites as well as other, more common types of meteorite; and the carbonaceous meteorites.

Then they studied individual chondrules from two chondritic meteorites, the Allende meteorite that fell in Mexico in 1969 and the Karoonda meteorite, which fell in Australia in 1930.

These meteorites turned out to contain chondrules from both the inner and outer solar system. Some material from the inner solar system must have managed to cross the Jupiter barrier to accrete with outer solar system chondrules into a meteorite that billions of years later would fall to Earth.

How? There are a couple of possible mechanisms, Williams said.

"One is that there was still movement along the disk midplane, although it should have been stopped by Jupiter," he said. "The other is that winds in the inner solar system could have lofted particles over the Jupiter gap."

Either of these mechanisms could also be responsible for inner solar system material that has also been found in comets by the Stardust mission.

The new study helps to connect cosmochemistry, planetary sciences and astronomy to give a complete picture of planet formation, Yin said.

Research paper


Related Links
University Of California - Davis
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Meteorite study suggests Earth may have been wet since it formed
St. Louis MO (SPX) Aug 31, 2020
A new study finds that Earth's water may have come from materials that were present in the inner solar system at the time the planet formed - instead of far-reaching comets or asteroids delivering such water. The findings published Aug. 28 in Science suggest that Earth may have always been wet. Researchers from the Centre de Recherches Petrographiques et Geochimiques (CRPG, CNRS/Universite de Lorraine) in Nancy, France, including one who is now a postdoctoral fellow at Washington University in St. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA seeks next class of Flight Directors for human spaceflight missions

Boeing's Starliner makes progress ahead of flight test with astronauts

The Seventh Meeting of the Japan-U.S. Comprehensive Dialogue on Space: Joint Statement

Russian cosmonaut sheds light on how ISS crew deals with suspected air leak

IRON AND ICE
With DUST-2 launch, NASA's sounding rocket program is back on the range

Engineers test Space Launch System rocket booster in Utah

NASA conducts SLS booster test for future Artemis missions

Northrop Grumman tests Space Launch System booster for Artemis

IRON AND ICE
Surprise on Mars

NASA Readies Perseverance Mars Rover's Earthly Twin

Nereidum Montes a mountain landscape formed by water, ice and wind

China releases recommended Chinese names for Mars craters

IRON AND ICE
China's reusable spacecraft returns to Earth after 2 days

Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

IRON AND ICE
Dragonfly Aerospace emerges from SCS Aerospace Group

Gogo announces entry into agreement to sell its Commercial Aviation unit to Intelsat for $400M in Cash

Satellite constellations could hinder astronomical research, scientists warn

Africa is investing more in space and satellite industry

IRON AND ICE
Making Perwave

Morocco, Netherlands, India, UAE to buy Longbow Fire Control Radars

US military sticks with Microsoft for $10 bn cloud contract

OCS tracking antenna support initial mission of LauncherOne

IRON AND ICE
New observations show planet-forming disc torn apart by its three central stars

Manchester experts' breakthrough narrows intelligent life search in Milky Way

Did meteorite impacts help create life on Earth and beyond

Bacteria could survive travel between Earth and Mars when forming aggregates

IRON AND ICE
Technology ready to explore subsurface oceans on Ganymede

Large shift on Europa was last event to fracture its surface

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.