24/7 Space News
EARLY EARTH
Mercury rising: Study sheds new light on ancient volcanoes' environmental impact
Scientists analyzed mercury levels from core samples from the Mochras Farm (Llanbedr) borehole in Wales to estimate how much and how rapidly carbon was released during ancient volcano events in Earth's history. Credit: Stephen Hesselbo
Mercury rising: Study sheds new light on ancient volcanoes' environmental impact
by Staff Writers for Penn News
University Park PA (SPX) Mar 04, 2024

Massive volcanic events in Earth's history that released large amounts of carbon into the atmosphere frequently correlate with periods of severe environmental change and mass extinctions. A new method to estimate how much and how rapidly carbon was released by the volcanoes could improve our understanding of the climate response, according to an international team led by researchers from Penn State and the University of Oxford.

The scientists reported this week (Feb. 26) in the journal Nature Geosciences that they have developed a new technique to estimate excess mercury left behind in the rock record due to ancient volcanic activity. The technique can estimate carbon emissions from large igneous provinces (LIPs), volcanic events that can last millions of years and produce magma that reaches Earth's surface and forms lava flows hundreds of miles long.

"Large igneous provinces are often used as an analog for human-caused climate change because they occur relatively rapidly geologically and release a lot of carbon dioxide," said Isabel Fendley, assistant research professor of geosciences at Penn State and lead author of the study. "But one big challenge we address with this study is that to date, it has been really difficult to figure out exactly how much carbon was released by these volcanoes."

The researchers analyzed core samples that capture a 20-million-year record of the early Jurassic period and found mercury levels increased during the peak activity of the Karoo-Ferrar large igneous province and the associated Toarcian Oceanic Anoxic Event, a period of extensive environmental and climate change some 185 million years ago.

However, the total estimated carbon emissions using the mercury records were significantly lower than what carbon-cycle models had predicted would be necessary to cause the observed environmental changes.

The findings suggest the volcanism triggered positive Earth system feedbacks - climate and environmental responses to the initial warming that in turn produced more warming. These positive feedbacks may be as important as the primary emissions in these large carbon emission scenarios, and current carbon cycle models may be underestimating the effects of a given amount of emissions, the scientists said.

'What this shows us is that there are Earth system responses that exacerbate the effects of the carbon the volcanoes emitted," Fendley said. "And based on our results, these feedback processes are actually quite important but not well understood."

Accurate estimates of LIP carbon emissions are important for understanding the impacts of positive and negative carbon-cycle feedback processes on future climate projections, the scientists said.

"In addition to historical climate change and understanding the history of life, it's also relevant for how we understand Earth's climate and how we investigate what happens to the environment after you release large amounts of carbon dioxide into the atmosphere," Fendley said.

Estimating the quantity of carbon emissions associated with LIPs has been a challenge in part because scientists have an incomplete record of how much lava erupted. The Karoo-Ferrar LIP, for example, occurred on the former supercontinent Gondwana, and that material is now spread out across the southern hemisphere, spanning modern-day Southern Africa, Antarctica and Tasmania, the scientists said.

The researchers instead turned to mercury, which is released as a gas during volcanic eruptions but was otherwise rarely found in high concentrations in the environment prior to human activity. Looking at the chemistry of rocks in the core samples, the scientists were able to determine how much mercury would be expected based on environmental conditions and how much extra was present caused by the volcanoes.

They developed a method to convert the measured changes in mercury concentrations to the volume of mercury gas emissions. Using the ratio of mercury gas emissions to carbon emissions in modern volcanoes, they estimated how much carbon the ancient volcanoes released.

The researchers said the core samples, from the Mochras borehole in Wales, U.K., provided a unique opportunity to conduct this research. The long record showed the first clear evidence that there were significantly larger volcanic eruptions during this time period compared to the preceding 15 million years, the scientists said.

"The large amount of existing geochemical data from the Mochras Farm (Llanbedr) borehole in Wales, drilled by the British Geological Survey, plus the very well-constrained chronology, provided a unique opportunity that enabled this analysis," Fendley said. "The decades-worth of previous work on the Mochras core enabled us to reconstruct original gas fluxes over millions of years, for periods that are traditional targets for paleo-environmental studies as well as the background state."

Other researchers on this project were Joost Frieling, postdoctoral research assistant, and Tamsin Mather and Hugh Jenkyns, professors, at the University of Oxford; Michael Ruhl, assistant professor at Trinity College Dublin; and Stephen Hesselbo, professor at the University of Exeter.

Research Report:Early Jurassic large igneous province carbon emissions constrained by sedimentary mercury

Related Links
Penn State
Explore The Early Earth at TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARLY EARTH
New techniques uncover ancient biomass secrets in Australian rocks
Gottingen, Germany (SPX) Feb 22, 2024
Researchers from the University of Gottingen have shed new light on the Earth's earliest life forms by analyzing ancient rocks from the Pilbara Craton in Western Australia, one of the few places on Earth where the primordial crust is still accessible. These rocks, approximately 3.5 billion years old, contain carbonaceous particles that offer clues to the microorganisms which inhabited our planet in its infancy. Published in the journal Precambrian Research, this research provides unprecedented insights ... read more

EARLY EARTH
Kyoto seeks to guard geishas from tourist 'paparazzi'

Global patent filings fall for first time in 14 years: UN

Under pressure - space exploration in our time

Modi says India's first astronauts will inspire nation

EARLY EARTH
MAPHEUS 14 high-altitude research rocket takes flight

HyImpulse readies SR75 rocket for historic maiden launch in Australia

Karman Space and Defense boosts ULA's Vulcan on Its Maiden flight

Orbit Fab Announces Strategic Leadership Reorganization to Propel Space Refueling Innovation

EARLY EARTH
Study reveals potential for life's building blocks from Mars' ancient atmosphere

Little Groundwater Recharge in Ancient Mars Aquifer, According to New Models

Three years later, search for life on Mars continues

Mining Into Mineral King: Sols 4110-4111

EARLY EARTH
Chang'e 6 and new rockets highlight China's packed 2024 space agenda

Long March 5 deploys Communication Technology Demonstrator 11 satellite

Shenzhou 17 astronauts complete China's first in-space repair job

Tiangong Space Station's Solar Wings Restored After Spacewalk Repair by Shenzhou XVII Team

EARLY EARTH
US and Australia signs Space Technology Safeguards Agreement

SKorea enhances military operations with Iridium connectivity

Turkcell Partners with Lynk for Satellite-Direct Mobile Services in Turkiye

LeoLabs names Tony Frazier as CEO to expand its role in global space operations

EARLY EARTH
UN, France co-host first forum to decarbonise construction sector

New image fusion algorithm enhances multi-dimensional perception

Scientists at uOttawa reveal how light behaves in formless solids

China opens first simulated environment for space research

EARLY EARTH
Hold on to your atmospheres: how planet size affects atmospheric escape

CUTE's groundbreaking design paves the way for future small-scale space missions

Earth as a test object

Space research sheds new light on formation of planets

EARLY EARTH
New moons of Uranus and Neptune announced

NASA's New Horizons Detects Dusty Hints of Extended Kuiper Belt

NASA's Europa Jupiter Mission will be packed with humanity's messages

UCF scientists use James Webb Space Telescope to uncover clues about Neptune's evolution

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.