![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Zurich, Switzerland (SPX) Oct 10, 2016
A child swings on a swing, gaining momentum with its legs. For physicists, this is a reasonably easy movement. They call it parametric oscillation. Things are getting more complicated if - in addition to the child's efforts - the mother (or the father) is around to push the swing. The interaction between the pushing force and the parametric oscillation can become very intricate, making it hard to calculate how much force the parent expends from the resulting irregular swinging motion. An interdisciplinary team of theoretical and experimental physicists at ETH Zurich has now succeeded in this very calculation. The researchers have been able to describe for the first time how parametric oscillation (the child's own drive) can be used to measure an external force (the parent's push). Their discovery has applications for sensors, and the scientists have submitted a patent application for the underlying principle.
Advantages for small sensors For these measurements to use intricate oscillations, as Zilberberg and his colleagues propose, a paradigm shift is necessary: sensors would have to be designed differently. The new principle brings particular advantages for very small sensors, says the physicist. It would make it possible to build extremely small yet precise sensors, as the measuring signal in the new principle stands out better against background noise than with current methods.
Experiments with atoms and guitar strings The scientists exerted a pulsating force on the string while continuously varying the frequency of the pulse. The researchers observed that the strength of the vibration of the string (amplitude) did not change fully continuous, but there was rather a sharp jump in amplitude at a particular frequency. As they discovered, this 'jump frequency' depends directly on the strength of the applied force and can therefore be used as a force meter. Zilberberg and his colleagues are now looking for industrial partners to help develop high-resolution sensors. The new principle could even be applied in computer technology. Zilberberg: "In the very early stages of the computer age there were computer memories that were based on oscillators, known as parametrons. The computer industry later lost interest in them, but our discovery could breathe new life into this field of research."
Related Links ETH Zurich Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |