. 24/7 Space News .
STELLAR CHEMISTRY
Massive twin star discovered snuggling close to its stellar sibling
by Staff Writers
Leeds UK (SPX) Mar 12, 2019

2MASS observations (background image) revealed a highly reddened source back in 2003 indicating the massive young nature of PDS 27. PIONIER on VLTI provides 2,000 times higher angular resolution making it possible to resolve PDS 27 as a binary system for the first time in 2019.

Astronomers have discovered a binary star system with the closest high-mass young stellar objects ever measured, providing a valuable "laboratory" to test theories on high mass binary star formation.

An international team led by the University of Leeds has determined the distance between the massive young star PDS 27 and its orbiting stellar companion to be just 30 astronomical units away or 4.5 billion km. That is roughly the distance between our Sun and Neptune, making them the stellar companions with the closest proximity ever determined for young high mass stars in a binary system - a star system with two stars in orbit around a centre of mass.

Study lead author, Dr Evgenia Koumpia, from the School of Physics and Astronomy at Leeds, said: "This is a very exciting discovery, observing and simulating massive binaries at the early stages of their formation is one of the main struggles of modern astronomy. With PDS 27 and its companion we have now found the closest, most massive young stellar objects in binaries resolved to date.

"There is a shortage of known young massive binary systems in charted space. High mass stars have comparatively short lifespans, burning out and exploding as supernovae in only a few million years, making them difficult to spot. This limits our ability to test the theories on how these stars form."

As part of their study the team has also identified a companion object for another young massive star referred to as PDS 37. The analysis revealed a distance between PDS 37 and its companion to be between 42 to 54 astronomical units -comparable to the distance between the Sun and Pluto. While further apart than PDS 27 and its companion, it is still a significant discovery given the need for confirmed massive young stellar binaries in astronomical research.

Dr Koumpia continued: "How these binary systems form is quite a controversial question with several theories having been put forward. Observational studies of binaries in their early stages are crucial to verifying the theories of their formation.

"PDS 27 and PDS 37 are rare and important laboratories that can help inform and test the theories on the formation of high mass binaries."

PDS 27 is at least 10 times more massive than our Sun, Dr Koumpia explained, and about 8,000 light years away. To determine the presence of stellar companions for PDS 27 and PDS 37, the team used the highest spatial resolution provided by the PIONIER instrument on the European Southern Observatory's Very Large Telescope Interferometer (VLTI).

This instrument combines light beams from four telescopes, each of which is 8.2 metres across, and mimics a single telescope with a diameter of 130m. The resulting high spatial resolving power allowed the team to resolve such close binary systems despite their huge distance from us and their close proximity to each other.

Study co-author Professor Rene Oudmaijer, also from the School of Physics and Astronomy at Leeds, said: "The next big question - which we have tended to avoid so far because of observational difficulties - is why so many of these massive stars are in binary systems?"

"It has become increasingly clear to astronomers that massive stars are almost never born alone, with at least one sibling for company. But the reasons why that is the case are still rather murky.

"Massive stars exert significant influence on their cosmic environment. Their stellar winds, energy and the supernova explosions they generate in turn can impact the formation of other stars and galaxies. The evolution and fate of high-mass stars is quite complex but previous studies have shown that they can be influenced to a large degree by their binary properties.

"The discovery of massive young binary stars provides a crucial step forward in being able to answer many of the questions we still have about these stellar objects. These discoveries were only possible thanks to the exquisite resolving power provided by the PIONIER instrument on the VLTI."

This research is published in the journal Astronomy and Astrophysics: Letters. "Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER"


Related Links
University of Leeds
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Could Photon Mass Influence the Rotational Dynamics of Galaxies
Mainz, Germany (SPX) Mar 11, 2019
The rotation of stars in galaxies such as our Milky Way is puzzling. The orbital speeds of stars should decrease with their distance from the center of the galaxy, but in fact stars in the middle and outer regions of galaxies have the same rotational speed. This may be due to the gravitational effect of matter that we can't see. But although researchers have been seeking it for decades, the existence of such 'dark matter' has yet to be definitively proven and we still don't know what it might be made of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
ISS Multilateral Coordination Board Joint Statement

Stanford lab wants to make the environment of outer space work for us

Out of This World Auction Sponsored by ARISS

The science circling above us on the Space Station

STELLAR CHEMISTRY
XQ-58A Valkyrie demonstrator completes inaugural flight

X-60A hypersonic flight research vehicle program completes critical design review

SpaceX CEO Musk on Russia's Rocket Engineering, Engines: 'Excellent'

China's new solid rocket booster completes test

STELLAR CHEMISTRY
SWIM Project Maps Potential Sources of Mars Water

Major challenges to sending astronauts to search for life on Mars

Researchers outline goals for collecting and studying samples from Mars

Simulated extravehicular activity science operations for Mars exploration

STELLAR CHEMISTRY
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

STELLAR CHEMISTRY
ESA helps firms large and small prosper in global satcom market

Next-generation space industry jobs ready for take-off

How ESA helps launch bright ideas and new careers

ISRO to Launch Nearly 30 Satellites in March on New PSLV Rocket

STELLAR CHEMISTRY
DARPA seeks tools to capture underground worlds in 3D

French armed forces tap Thales for coastal surveillance radars

Matrix could ensure vital copper supplies

At the limits of detectability

STELLAR CHEMISTRY
SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

K stars more likely to host habitable exoplanets

UK to tackle danger of solar wind and find new Earth-like planets

"Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds

STELLAR CHEMISTRY
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.