![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Helsinki, Finland (SPX) Aug 04, 2016
The recent detection of gravitational waves emitted by two merging black holes by the LIGO and Virgo collaborations has opened up a new observational window into the cosmos. Future observations of similar mergers between two neutron stars or a neutron star and a black hole may revolutionize what we know today about the properties of neutron stars, the densest stellar objects in the universe. By providing detailed dynamical information about the material properties of these stars, such measurements will shed light on their internal composition. Ultimately, they may answer the question, whether neutron stars are composed solely of ordinary atomic nuclei, or if they contain more exotic matter in the form of dense deconfined quark matter, says physicist Aleksi Vuorinen at the University of Helsinki.
Towards accurate theoretical understanding, as well This is, however, an extremely challenging problem, as few first principle tools exist for studying such a strongly interacting medium due to the complexity of the underlying microscopic theory, Quantum Chromodynamics (QCD). The most important tools available for such studies are so-called chiral effective theories for the nuclear interactions, applicable for nuclear matter, and thermal perturbation theory, applicable for deconfined quark matter. In their recent paper, Cool quark matter, published in Physical Review Letters on 22.7.2016, Aleksi Kurkela (CERN and University of Stavanger) and Aleksi Vuorinen were able to perform the first accurate determination of the thermodynamic properties of dense quark matter under the violent conditions that take place in neutron star mergers. They applied thermal perturbation theory to a high order, generalizing previous work applicable only at zero temperature. This is a very important development, as neutron star mergers may witness enormously high temperatures, reaching perhaps even 100 MeV, or 1.000.000.000.000 K. The new results enable realistic simulations with neutron stars containing quark cores, and thus represent an important step towards eventually distinguishing between neutron and quark matter cores in neutron stars. Research paper: "Cool Quark Matter"
Related Links University of Helsinki Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |