. | . |
Mapping the edge of reality by Staff Writers Melbourne, Australia (SPX) May 02, 2017
Australian and German researchers have collaborated to develop a genetic algorithm to confirm the rejection of classical notions of causality. Dr Alberto Peruzzo from RMIT University in Melbourne said: "Bell's theorem excludes classical concepts of causality and is now a cornerstone of modern physics. "But despite the fundamental importance of this theorem, only recently was the first 'loophole-free' experiment reported which convincingly verified that we must reject classical notions of causality. "Given the importance of this data, an international collaboration between Australian and German institutions has developed a new method of analysis to robustly quantify such conclusions." The team's approach was to use genetic programming, a powerful machine learning technique, to automatically find the closest classical models for the data. Together, the team applied machine learning to find the closest classical explanations of experimental data, allowing them to map out many dimensions of the departure from classical that quantum correlations exhibit. Dr Chris Ferrie, from the University of Technology Sydney, said: "We've light-heartedly called the region mapped out by the algorithm the 'edge of reality,' referring to the common terminology 'local realism' for a model of physics satisfying Einstein's relativity. "The algorithm works by building causal models through simulated evolution imitating natural selection - genetic programming. "The algorithm generates a population of 'fit' individual causal models which trade off closeness to quantum theory with the minimisation of causal influences between relativistically disconnected variables." The team used photons, single particles of light, to generate the quantum correlations that cannot be explained using classical mechanics. Quantum photonics has enabled a wide range of new technologies from quantum computation to quantum key distribution. The photons were prepared in various states possessing quantum entanglement, the phenomenon which fuels many of the advantages in quantum technology. The data collected was then used by the genetic algorithm to find a model that best matches the observed correlations. These models then quantify the region of models which are ruled out by nature itself. The team includes theoretical physicists and computer scientists from the ARC Centre for Engineered Quantum Systems (EQuS) at the University of Sydney, the Centre for Quantum Software and Information at the University of Technology Sydney and the Institute for Theoretical Physics at the University of Cologne as well as the experimental group at RMIT University's Quantum Photonics Laboratory. The research, "Explaining quantum correlations through evolution of causal models", has been published in Physical Review A and can be accessed online.
Paris (ESA) Apr 27, 2017 ESA's Euclid mission has passed another important milestone with the delivery of the first three state-of-the art detectors for the Near-Infrared Spectrometer and Photometer instrument. Euclid is a pioneering mission to observe billions of faint galaxies and investigate the origin of the Universe's accelerating expansion, as well as the mysterious nature of dark energy, dark matter and gra ... read more Related Links RMIT University Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |