![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Thuwal, Saudi Arabia (SPX) Jan 17, 2018
Flexible ultrahigh resolution displays have benefits for next-generation mobile electronics, such as point-of-care medical diagnostic devices. KAUST has developed a unique transistor architecture that boosts the performance of the display circuitry. Flat-panel displays implemented in smart watches, mobile devices and televisions rely on planar transistor circuits to achieve high-resolution and fast imaging. In these circuits, thin-film transistors, acting as switches, control the electric current that activates individual image elements, or pixels, consisting of light-emitting diodes (LEDs) or liquid crystals. Future displays are expected to offer an even better visual experience through increases in resolution and frame rate. While transistor miniaturization can augment resolution, a higher field-effect mobility of the channel material can fulfill both these needs. It does this through its ability to facilitate electron and hole flows between contacts under applied voltage, which then allows transistors to switch faster and occupy a smaller pixel area. To date, amorphous-oxide semiconductors, such as zinc oxide and indium-gallium zinc oxide, have provided transistor channels with modest mobility. Scaling down these transistors is expensive and introduces flaws known as short-channel effects that increase their power consumption and degrade their performance, explains Muhammad Hussain, who led the research team. As an alternative, Hussain's team has designed non-planar vertical semiconductor fin-like structures that are laterally interconnected to form wavy transistor arrays. The researchers opted for zinc oxide as the active channel material and generated the wavy architecture on a silicon substrate before transferring it onto a flexible soft polymer support using a low temperature process. Thanks to the vertical orientation, the researchers widened the transistors by 70% without expanding their occupied pixel area, doubling the transistor performance. The wavy arrays exhibited reduced short-channel effects and higher turn-on voltage stability compared to their planar equivalents. Moreover, in a proof-of-concept experiment, they could drive flexible LEDs at twice the output power as their conventional counterparts. "The LEDs were brighter without increasing power consumption," says Hussain. According to Hussain, considering the transition from desktop to smart phone reveals an obvious trend: reduction in size and weight leads to better displays. Yet, most people juggle laptops, tablets and smart phones. "Having a single gadget with shape and size that can be dynamically reconfigured is a dream we are working toward," he says. He notes that wavy transistor arrays represent a step in that direction. Hanna, A.N., Kutbee, A.T., Subedi, R.C., Ooi, B. and Hussain, M.M. Wavy architecture thin-film transistor for ultra-high resolution flexible displays. Small advance online publication, 13 November 2017.
![]() Paris (AFP) Jan 15, 2018 Smartphones may have become ubiquitous in France, but the country's language mavens hope there's still time to keep the word from becoming ensconced in everyday speech. The Enrichment Commission for the French Language has come up with what it considers a more suitable expression: "le mobile multifonction", or the multifunction cellphone. It doesnt' exactly trip off the tongue, but it fi ... read more Related Links King Abdullah University of Science and Technology Satellite-based Internet technologies
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |