. 24/7 Space News .
TECH SPACE
Making the unimaginable possible in materials discovery
by Staff Writers
Lemont IL (SPX) Dec 22, 2022

Reaction pathway from simple precursor to complex structure. Final product here is a layered structure with five elements - sodium, barium, oxygen, copper and sulfur.

Scientists find way to make new materials for batteries, magnets and microelectronics. The world's best artists can take a handful of differently colored paints and create a museum-worthy canvas that looks like nothing else. They do so by drawing upon inspiration, knowledge of what's been done in the past and design rules they learned after years in the studio.

Chemists work in a similar way when inventing new compounds. Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory, Northwestern University and The University of Chicago have developed a new method for discovering and making new crystalline materials with two or more elements.

"We expect that our work will prove extremely valuable to the chemistry, materials and condensed matter communities for synthesizing new and currently unpredictable materials with exotic properties," said Mercouri Kanatzidis, a chemistry professor at Northwestern with a joint appointment at Argonne.

"Our invention method grew out of research on unconventional superconductors," said Xiuquan Zhou, a postdoc at Argonne and first author of the paper. ?"These are solids with two or more elements, at least one of which is not a metal. And they cease to resist the passage of electricity at different temperatures - anywhere from colder than outer space to that in my office."

Over the last five decades, scientists have discovered and made many unconventional superconductors with surprising magnetic and electrical properties. Such materials have a wide gamut of possible applications, such as improved power generation, energy transmission and high-speed transportation. They also have the potential for incorporation into future particle accelerators, magnetic resonance imaging systems, quantum computers and energy-efficient microelectronics.

The team's invention method starts with a solution made of two components. One is a highly effective solvent. It dissolves and reacts with any solids added to the solution. The other is not as good a solvent. But it is there for tuning the reaction to produce a new solid upon addition of different elements. This tuning involves changing the ratio of the two components and the temperature. Here, the temperature is quite high, from 750 to 1,300 degrees Fahrenheit.

"We are not concerned with making known materials better but with discovering materials no one knew about or theorists imagined even existed," Kanatzidis noted. ?"With this method, we can avoid reaction pathways to known materials and follow new paths into the unknown and unpredicted."

As a test case, the researchers applied their method to crystalline compounds made of three to five elements. As recently reported in Nature, their discovery method yielded 30 previously unknown compounds. Ten of them have structures never seen before.

The team prepared single crystals of some of these new compounds and characterized their structures at UChicago's ChemMatCARS beamline at 15-ID-D and the X-ray Science Division's 17-BM-B of the Advanced Photon Source, a DOE Office of Science user facility at Argonne. ?"With beamline 17-BM-B of the APS, we were able to track the evolution of the structures for the different chemical phases that formed during the reaction process," said 17-BM-B beamline scientist Wenqian Xu.

"Traditionally, chemists have invented and made new materials relying only on knowledge of the starting ingredients and final product," Zhou said. ?"The APS data allowed us to also take into account the intermediate products that form during a reaction."

The Center for Nanoscale Materials, another DOE Office of Science user facility at Argonne, contributed key experimental data and theoretical calculations to the project.

And this is only the beginning of what is possible, since the method can be applied to almost any crystalline solid. It can also be applied to producing many different crystal structures. That includes multiple stacked layers, a single layer an atom thick and chains of molecules that are not linked. Such unusual structures have different properties and are key to developing next-generation materials applicable to not only superconductors, but also microelectronics, batteries, magnets and more.

This research was supported by the DOE's Office of Science, Basic Energy Sciences program.

Research Report:Discovery of chalcogenides structures and compositions using mixed fluxes


Related Links
Argonne National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Elucidating the mechanism of high proton conduction to develop clean energy materials
Tokyo, Japan (SPX) Dec 22, 2022
Electrochemical devices such as fuel cells are becoming indispensable for new power generation technologies because they can efficiently produce renewable energy. Ceramic proton conductors can be used in many applications, including protonic ceramic fuel cells (PCFCs), hydrogen pumps, sensors, and separation membranes. In particular, the PCFCs based on ceramic proton conductors are promising, because they can work at lower temperatures compared with the conventional solid oxide fuel cells (SOFCs), thank ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Five things to watch at CES tech megashow

AI infused everything on show at CES gadget extravaganza

Russian space chief praises US after ISS coolant leak

Northrop Grumman space navigation systems achieve galactic threshold

TECH SPACE
Exploration power for the Moon, Mars, and Beyond

Young ESA team prepare Ariane 6 passenger

UK space regulator issues Virgin Orbit licenses ahead of UK launch

Musk says will step down as Twitter CEO once successor found

TECH SPACE
MOXIE sets consecutive personal bests and Mars records for oxygen production

NASA explores a winter wonderland on Mars

Leaving the Amapari Drill Site: Sol 3687

NASA retires InSight Mars Lander

TECH SPACE
Chinese space-tracking ship sets sail for new missions

China's space sector set to rocket into future

China's space station Tiangong enters new phase of application, development

China's new space station opens for business in an increasingly competitive era of space activity

TECH SPACE
Iridium introduces its latest IoT data service

US space entities examine future space technology

Voyager Space signs MoU with Canadian Space Agency

L3Harris To Acquire Aerojet Rocketdyne

TECH SPACE
Ditching concrete for earth to build a cleaner future

Making the unimaginable possible in materials discovery

Waste not want not: Santiago's poorest district plants recycling seed

Elucidating the mechanism of high proton conduction to develop clean energy materials

TECH SPACE
Assembly begins on NASA's next tool to study exoplanets

Kepler's first exoplanet is spiraling toward its doom

Two exoplanets may be mostly water, Hubble and Spitzer find

ESPRESSO and CARMENES discover two potentially habitable exo-Earths around a star near the Sun

TECH SPACE
Juno spacecraft recovering memory after 47th Flyby of Jupiter

Four decade study finds mysterious patterns in temperatures at Jupiter

Comet impacts could bring ingredients for life to Europa's ocean

Juno exploring Jovian moons during extended mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.