. 24/7 Space News .
STELLAR CHEMISTRY
Making matter from collisions of light
by Staff Writers
Washington DC (SPX) Jan 26, 2022

Two gold ions (Au) moving in opposite directions close to the speed of light (v"c) are each surrounded by a cloud of real photons (?). When these photons collide, they create a matter-antimatter pair: an electron (e-) and positron (e+).

Nuclear scientists have used a powerful particle accelerator to create matter directly from collisions of light. Scientists predicted this process in the 1930s, but it has never been achieved in a single direct step.

The researchers accelerated two beams of gold ions to close to the speed of light in opposite directions. At such speeds, each gold ion is surrounded by particles of light (real photons) generated by the ion's perpendicular magnetic and electric fields. When the ions graze past one another without colliding, the photons interact to produce electrons (matter) and positrons (antimatter).

The idea of creating matter from light stems from Einstein's famous E=mc2 equation, which states that energy and matter (mass) are interchangeable. But using light energy to test this-and proving that the photons are real and long-lived, not "virtual" and short-lived-is challenging.

Even today's most powerful lasers can't directly produce matter. But new data show that photons surrounding ions at the Relativistic Heavy Ion Collider (RHIC) can. The momentum and angular distributions of the resulting electron-positron pairs indicate, within the high-precision limits of the experiment, that these particles come from real photons. This makes the experiment a direct demonstration of the Breit-Wheeler effect predicted in 1934.

In 1934, physicists Gregory Breit and John Wheeler predicted that collisions of photons could create matter and antimatter, and they even suggested doing so by accelerating heavy ions. RHIC, a DOE Office of Science user facility that accelerates heavy ions, turned out to be the ideal facility for testing their prediction.

Accelerating heavy ions such as gold generates a powerful magnetic field-like current flowing through a wire. At high speed, the spiraling magnetic and perpendicular electric fields are of equal strength-which is the definition of a photon, a quantized "particle" of light.

RHIC's STAR collaboration searched for evidence that collisions of photons surrounding RHIC's ions could create matter and antimatter. Nuclear physicists studied thousands of electron-positron pairs produced in near-miss collisions, where only the photons interact.

Researchers measured all available motion properties of the electron-positron pairs. By correlating the photons' momentum, spatial location, and polarization with experimental observables, they found that the transverse distribution of photons was driven by the local electromagnetic field and not by quantum uncertainty.

The high-precision data were consistent with particles being generated by real photon interactions, rather than from virtual photons. The analysis provides solid evidence for the Breit-Wheeler effect.

Research Report: "Measurement of e + e - Momentum and Angular Distributions from Linearly Polarized Photon Collisions"


Related Links
US Department of Energy
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New epoch of miniaturized Cherenkov detectors
Beijing, China (SPX) Jan 05, 2022
Cherenkov radiation refers to the photon emission from the swift charged particle moves with the velocity greater than the phase velocity of light in the surrounding materials. Ever since its experimental observation by a Soviet physicist P.A. Cherenkov in 1934, Cherenkov radiation has been widely explored and applied in many research fields ranging from cosmology and information, to medical and life science. Among all these applications, the detection of high-energy particles (i.e. identifying the type ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Beaming with science

US undermines safety of Russian cosmonaut's at ISS by denying visa, Roscosmos says

Five Space Station Research Results Contributing to Deep Space Exploration

STEM student experiments win Flight Opportunity in NASA Tech Contest

STELLAR CHEMISTRY
New tech spurs spaceplane vision: halfway around world in 40 minutes

University spy in Germany 'passed Ariane rocket details to Russia'

SpaceX ISS freighter splashes down off Florida

Ariane 6 upper stage readies for tests at Europe's Spaceport

STELLAR CHEMISTRY
SwRI scientist helps confirm liquid water beneath Mars south polar cap

New control technique uses solar panels to reach desired Mars orbit

Sols 3367-3368: The Prow to take another bow

How to Retain a Core

STELLAR CHEMISTRY
China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

STELLAR CHEMISTRY
OneWeb and Hughes to bring orbital broadband service to India

EU launches 'game changer' space startup fund

Blue Origin set to acquire Honeybee Robotics

Summit to ignite Europe's bold space ambitions

STELLAR CHEMISTRY
Physicist solves century old problem of radiation reaction

ESA has the tension on the pull

A new language for quantum computing

Future trillion dollar 'space economy' threatened by debris, WVU researcher says

STELLAR CHEMISTRY
A planetary dynamical crime scene at 14 Herculis

Scientists are a step closer to finding planets like Earth

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

Ironing out the interiors of exoplanets

STELLAR CHEMISTRY
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.