. | . |
Making machines that make robots, and robots that make themselves by Hannah Meiseles for MIT News Boston MA (SPX) Aug 23, 2021
After a summer of billionaires in space, many people have begun to wonder when they will get their turn. The cost of entering space is currently too high for the average citizen, but the work of PhD candidate Martin Nisser may help change that. His work on self-assembling robots could be key to reducing the costs that help determine the price of a ticket. Nisser's fascination with engineering has been a consistent theme throughout a life filled with change. Born to Swedish parents, he spent a decade in Greece before moving to the UAE, and eventually to Scotland for his undergraduate degree. No matter what new school he attended, his favorite subjects remained the same. "The idea of using math and physics to build something tangible always clicked with me," says Nisser. "As a kid, I had always wanted to be an inventor." By the time he completed his undergraduate degree, Nisser knew what he aspired to invent. His senior capstone project had drawn upon multiple disciplines and provided the perfect introduction to robotics. "We had to sift through all of the different things we learned in college and combine them to do something interesting. Multidisciplinarity is often essential in robotics and part of what makes it so alluring to me," he says.
Designing robots prepared for space The experience brought Nisser to his current interest in exporing how robots can be automatically fabricated using both top-down processes like 3D printing and bottom-up processes like self-assembly. He notes that this engineering goal opens a wide door of academic questions. "The multidisciplinarity required to build these engineering systems - from mechanical and electrical engineering to computer science - means you're always learning something new. Every once in a while, you get to apply a technique you've learned in one discipline to another, in a way it hasn't been used before," he says. "That's usually when something interesting happens." Prior to beginning his PhD, Nisser also researched reconfigurable robots at the European Space Agency. This project helped him realize he could combine his passion for robotics with his interest in space. "Because every system launched into space has to fit within the confines of a rocket firing, space agencies are interested in structures that can self-reconfigure between smaller and larger shapes," he says. "I saw a great opportunity to build on what I'd learned about self-folding robotics. I developed algorithms that would allow large numbers of spacecraft modules to move together, attach to one another, and then reconfigure together into a target shape." Now a PhD student in the HCI Engineering Group at MIT's Computer Science and Artificial Intelligence Laboratory, Nisser has partnered with the MIT Space Exploration Initiative to continue studying self-assembly in space. His team is developing a new kind of 3D printing technique adapted to the space environment, allowing them to create novel structures without the constraints of gravity. He recently tested his work on a parabolic flight, which allowed him to experience weightlessness for several intervals of 20 seconds. This December, the project will be launched to the International Space Station with SpaceX for a 30-day science mission.
Making hardware more accessible Nisser has already begun to address this challenge by constructing LaserFactory, an add-on device for only $150 that connects to laser cutters and produces custom-designed devices ranging from electronic wearables to functional drones. The fabrication process requires no further instructions to operate - finished drones can fly straight off the assembly line. The device has already been featured by the BBC and other outlets for its ingenuity. "The ability to print fully functional robots is also important for space, where creating on-demand electromechanical devices without any human intervention is paramount to enabling long-duration missions," he adds. In his free time, Nisser furthers his goal of democratizing technology by teaching introductory programming to incarcerated women. His lessons are through Brave Behind Bars, a program he and grad student Marisa Gaetz created last year after learning about the U.S. mass incarceration rate. "Almost one in a hundred people in the U.S. today are incarcerated, and more than 80 percent of those will return to prison within a few years of release" he says. "Providing incarcerated people with educational opportunities that promote success in today's digital world is one of the most effective ways to help reduce this recidivism." After graduating, Nisser hopes to continue teaching and conducting robotics research by pursuing a career as a professor. He looks forward to doing more projects related to space and hardware accessibility. "The closer we get toward automating assembly, the sooner we can reduce costs and increase accessibility to all kinds of advanced hardware systems," says Nisser. "Initiatives like One Laptop Per Child helped increase awareness of the tremendous benefits of connecting people to the internet by letting people share and create things digitally. The same analogy translates to hardware," he says. "By distributing fabrication via inexpensive printers or self-assembling hardware that remove the need for engineering expertise, we create an opportunity for people to share and create things physically. And that's good for everyone."
Magnets could offer better control of prosthetic limbs Boston MA (SPX) Aug 19, 2021 For people with amputation who have prosthetic limbs, one of the greatest challenges is controlling the prosthesis so that it moves the same way a natural limb would. Most prosthetic limbs are controlled using electromyography, a way of recording electrical activity from the muscles, but this approach provides only limited control of the prosthesis. Researchers at MIT's Media Lab have now developed an alternative approach that they believe could offer much more precise control of prosthetic limbs. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |