. 24/7 Space News .
TECH SPACE
Making 3-D printing smarter with machine learning
by Staff Writers
Los Angeles CA (SPX) Feb 12, 2020

A screenshot from printfixer shows the predicted variations in a printed shape, with expanded areas highlighted in red and smaller areas marked in blue.

3-D printing is often touted as the future of manufacturing. It allows us to directly build objects from computer-generated designs, meaning industry can manufacture customized products in-house, without outsourcing parts. But 3-D printing has a high degree of error, such as shape distortion. Each printer is different, and the printed material can shrink and expand in unexpected ways. Manufacturers often need to try many iterations of a print before they get it right.

What happens to the unusable print jobs? They must be discarded, presenting a significant environmental and financial cost to industry.

A team of researchers from USC Viterbi School of Engineering is tackling this problem, with a new set of machine learning algorithms and a software tool called PrintFixer, to improve 3-D printing accuracy by 50 percent or more, making the process vastly more economical and sustainable.

The work, recently published in IEEE Transactions on Automation Science and Engineering, describes a process called "convolution modeling of 3-D printing." It's among a series of 15 journal articles from the research team covering machine learning for 3-D printing.

The team, led by Qiang Huang, associate professor of industrial and systems engineering, chemical engineering and materials science, along with Ph.D. students Yuanxiang Wang, Nathan Decker, Mingdong Lyu, Weizhi Lin and Christopher Henson has so far received $1.4M funding support, including a recent $350,000 NSF grant. Their objective is to develop an AI model that accurately predicts shape deviations for all types of 3-D printing and make 3-D printing smarter.

"What we have demonstrated so far is that in printed examples the accuracy can improve around 50 percent or more," Huang said. "In cases where we are producing a 3-D object similar to the training cases, overall accuracy improvement can be as high as 90 percent."

"It can actually take industry eight iterative builds to get one part correct, for various reasons," Huang said, "and this is for metal, so it's very expensive."

Every 3-D printed object results in some slight deviation from the design, whether this is due to printed material expanding or contracting when printed, or due to the way the printer behaves.

PrintFixer uses data gleaned from past 3-D printing jobs to train its AI to predict where the shape distortion will happen, in order to fix print errors before they occur.

Huang said that the research team had aimed to create a model that produced accurate results using the minimum amount of 3-D printing source data.

"From just five to eight selected objects, we can learn a lot of useful information," Huang said. "We can leverage small amounts of data to make predictions for a wide range of objects."

The team has trained the model to work with the same accuracy across a variety of applications and materials - from metals for aerospace manufacturing, to thermal plastics for commercial use. The researchers are also working with a dental clinic in Australia on the 3-D printing of dental models.

"So just like a when a human learns to play baseball, you'll learn softball or some other related sport much quicker," said Decker, who leads the software development effort development in Huang's group. "In that same way, our AI can learn much faster when it has seen it a few times."

"So you can look at it," said Decker, "and see where there are going to be areas that are greater than your tolerances, and whether you want to print it."

He said that users could opt to print with a different, higher-quality printer and use the software to predict whether that would provide a better result.

"But if you don't want to change the printer, we also have incorporated functionality into the software package allowing the user to compensate for the errors and change the object's shape - to take the parts that are too small and increase their size, while decreasing the parts that are too big," Decker said. "And then, when they print, they should print with the correct size the first time."

The team's objective is for the software tool to be available to everyone, from large scale commercial manufacturers to 3-D printing hobbyists. Users from around the world will also be able to contribute to improving the software AI through sharing of print output data in a database.

"Say I'm working with a MakerBot 3-D printer using PLA (a bioplastic used in 3-D Printing), I can put that in the database, and somebody using the same model and material could take my data and learn from it," Decker said.

"Once we get a lot of people around the world using this, all of a sudden, you have a really incredible opportunity to leverage a lot of data, and that could be a really powerful thing," he said.

Research paper


Related Links
University Of Southern California
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Fastest high-precision 3D printer
Karlsruhe, Germany (SPX) Feb 07, 2020
3D printers working in the millimeter range and larger are increasingly used in industrial production processes. Many applications, however, require precise printing on the micrometer scale at a far higher speed. Researchers of Karlsruhe Institute of Technology (KIT) have now developed a system to print highly precise, centimeter-sized objects with submicrometer details at a so far unmatched speed. This system is presented in a special issue of Advanced Functional Materials (DOI: 10.1002/adfm.2019 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Space station to forge ultra-fast connections

Software defects could have destroyed Boeing Starliner on test flight

Northrop postpones Antares rocket launch in Virginia on Sunday

KBR wins $400M recompete to provide NASA Intelligent Systems Research

TECH SPACE
NASA, Europe space agency launch Solar Orbiter mission

Economical and environmentally friendly solutions on the commercial satellites market

Arianespace at the service of SKY Perfect JSAT and KARI with JCSAT-17 and GEO-KOMPSAT-2B

India, Russia Agree to Develop Advanced Ignition Systems to Propel Futuristic Rockets, Missiles

TECH SPACE
Mars 2020 equipped with laser vision and better mics

MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

TECH SPACE
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

TECH SPACE
Maxar Technologies will build Intelsat Epic geostationary communications satellite with NASA hosted payload

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

Australia's first space incubator seeks global applicants for 2020 program

RUAG Space dispenses another batch of Airbus OneWeb satellites

TECH SPACE
First time controlling two spacecraft with one dish

New threads: Nanowires made of tellurium and nanotubes hold promise for wearable tech

Fastest high-precision 3D printer

Researchers report progress on molecular data storage system

TECH SPACE
Distant giant planets form differently than 'failed stars'

CHEOPS space telescope takes its first pictures

Scientists discover nearest known 'baby giant planet'

NASA's Webb will seek atmospheres around potentially habitable exoplanets

TECH SPACE
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.