![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Seoul, South Korea (SPX) Feb 20, 2018
Researchers at the Center for Quantum Nanoscience within the Institute for Basic Science (IBS) have made a major breakthrough in controlling the quantum properties of single atoms. In an international collaboration with IBM Research in San Jose, USA, using advanced and novel techniques, QNS scientists identified which mechanisms destroy the quantum properties of individual atoms by manipulating the magnetic state of a single iron atom on a thin insulator. Using a Scanning Tunneling Microscope, which utilizes an atomically sharp metal tip, they were able to precisely image individual iron atoms and measure and control the time that the iron atom can maintain its quantum behavior. Their findings, published in the journal Science Advances, show that the loss in quantum state superposition is mainly caused by nearby electrons that the researchers injected with extreme control into the iron atom. "We found that almost every electron destroys the quantum state," explains Dr. Philip Willke, first author of the study. "In addition, we found that nearby fluctuating magnets had a similar negative impact. While our experiments decreased the state of superposition on purpose, it also gave us valuable clues on how to improve atoms' quantum states." Andreas Heinrich, Director of the IBS Center for Quantum Nanoscience added: "Understanding these destructive interactions allows us to avoid them in future experiments and improve the performance of magnetic quantum sensors that, in this case, only consist of a single atom." Quantum nanoscience relies on harnessing the properties of atoms and molecules for potential advances in quantum sensing; potentially improving devices using such technology, including hospital MRI machines. Quantum computers could also potentially benefit from this research. While still in early development, quantum computation promises to vastly outperform classical computers in tasks such as database management, search and optimization. At its core lies the fact that a quantum system can be in two quantum states at the same time; an effect called the superposition of quantum states. However, when such a quantum system interacts in particular environments - either through desired or undesired contact - this superposition of states is easily destroyed. This principle makes it crucial for quantum nanoscientists to understand and control these processes.
![]() ![]() Fingerprints of quantum entanglement Vienna, Austria (SPX) Feb 16, 2018 The ultimate goal of quantum information science is to develop a quantum computer, a fully-fledged controllable device which makes use of the quantum states of subatomic particles to store information. As with all quantum technologies, quantum computing is based on a peculiar feature of quantum mechanics, quantum entanglement. The basic units of quantum information, the qubits, need to correlate in this particular way in order for the quantum computer to achieve its full potential. One of th ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |