. 24/7 Space News .
STELLAR CHEMISTRY
Major NSF grant accelerates development of the Giant Magellan Telescope
by Staff Writers
Pasadena CA (SPX) Sep 17, 2020

stock illustration only

The GMTO Corporation has received a $17.5 million grant from the National Science Foundation (NSF) to accelerate the prototyping and testing of some of the most powerful optical and infrared technologies ever engineered.

These crucial advancements for the Giant Magellan Telescope (GMT) at the Las Campanas Observatory in Chile will allow astronomers to see farther into space with more detail than any other optical telescope before. The NSF grant positions the GMT to be one of the first in a new generation of large telescopes, approximately three times the size of any ground-based optical telescope built to date.

The GMT and the Thirty Meter Telescope (TMT) are a part of the US Extremely Large Telescope Program (US-ELTP), a joint initiative with NSF's NOIRLab to provide superior observing access to the entire sky as never before. Upon completion of each telescope, US scientists and international partners will be able to take advantage of the program's two pioneering telescopes to carry out transformational research that answers some of humanity's most pressing questions, such as are we alone in the universe and where did we come from.

"We are honored to receive our first NSF grant," said Dr. Robert Shelton, President of the GMTO Corporation. "It is a giant step toward realizing the GMT's scientific goals and the profound impact the GMT will have on the future of human knowledge."

One of the great challenges of engineering revolutionary technologies is constructing them to operate at optimal performance. The Giant Magellan Telescope is designed to have a resolving power ten times greater than the Hubble Space Telescope - one of the most productive scientific achievements in the history of astronomy. This advancement in image quality is a prerequisite for the GMT to fully realize its scientific potential and expand our knowledge of the universe.

"Image quality on any telescope starts with the primary mirror," said Dr. James Fanson, Project Manager of the GMTO Corporation. "The Giant Magellan Telescope's primary mirror comprises seven 8.4m mirror segments. To achieve diffraction-limited imaging, we have to be able to phase these primary mirror segments so that they behave as a monolithic mirror. Once phased, we must then correct for Earth's turbulent atmospheric distortion."

Phasing involves precisely aligning a telescope's segmented mirrors and other optical components so that they work in unison to produce crisp images of deep space. Achieving this with seven of the world's largest mirrors ever built is no easy task.

The immense size of the GMT's primary mirror requires a powerful adaptive optics system to correct for the blurring effects of the Earth's atmospheric turbulence at kilohertz speeds. In other words, astronomers need to take the subtle "twinkle" out of the stars in order to capture high-resolution data from celestial objects thousands of light-years from our planet.

The NSF grant enables the GMT to build two phasing testbeds that will allow engineers to demonstrate, in a controlled laboratory setting, that its core designs will work to align and phase the telescope's seven mirror segments with the required precision to achieve diffraction-limited imaging at first light in 2029.

This includes a full-scale prototype of the primary mirror support and control system that delivers active optical control. The testbeds will be developed at the University of Arizona Center for Astronomical Adaptive Optics (CAAO) and the Smithsonian Astrophysical Observatory (SAO), while actuator testing and integration of the primary mirror support will be developed at Texas A and M University.

The NSF grant also enables the partial build and testing of a next-generation Adaptive Secondary Mirror (ASM), which is used to perform the primary mirror phasing and atmospheric distortion correction. This work will be developed in contract with AdOptica.

"Our seven Adaptive Secondary Mirrors take this technology to the next step," said Dr. Fanson. "No one has attempted to use seven ASMs before the Giant Magellan Telescope. They are probably the most advanced tech we have on the telescope, and their success is a top priority. We need to test and validate their performance early on in the project."

Astronomers will use the GMT's high-fidelity adaptive mirrors and other revolutionary adaptive optics technologies to detect faint biosignatures from distant exoplanets - one of the GMT's primary scientific goals.

This work is part of a larger $23 million joint-award to the Association of Universities for Research in Astronomy (AURA) and the GMTO Corporation over the next three years. The GMT project is the work of a distinguished international consortium of leading universities and science institutions.


Related Links
Giant Magellan Telescope Organization
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Update on Arecibo Observatory Facility After Telescope Damage
Washington DC (SPX) Sep 11, 2020
A detailed structural model of the current state of the entire telescope began Aug. 17 and is expected to be completed within the next two weeks. Today marks 30 days since the Arecibo Observatory went offline, because an auxiliary cable broke and damaged the dish and Gregorian Dome. While no cause has yet been determined, the AO leadership team is working closely with the National Science Foundation (NSF), which owns the facility, to implement a plan to first stabilize the critical structura ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's Partnership Between Art and Science: A Collaboration to Cherish

ISS may need to evade US Military cubesat

Israeli tech start-ups take on the Emirates

NASA Goddard's first virtual interns reflect on their summer experience

STELLAR CHEMISTRY
PLD Space closes new investment in tie-up with Arcano Partners

China's launch of new satellite fails

Northrop Grumman and NASA donate Shuttle boosters to California Science Center

Fiery Blast After Astra Rocket Launch Fail in Kodiak

STELLAR CHEMISTRY
Study shows difficulty in finding evidence of life on Mars

China's Mars probe travels 137 mln km

ERC Space and Robotics Event 2020

The ERC 2020 shows how to adapt in a post-pandemic world

STELLAR CHEMISTRY
Chinese spacecraft launched mystery object into space before returning to Earth

China sends nine satellites into orbit by sea launch

China's reusable spacecraft returns to Earth after 2 days

Mars-bound Tianwen 1 hits milestone

STELLAR CHEMISTRY
Dragonfly Aerospace emerges from SCS Aerospace Group

COMSAT expands hardware footprint with new Orbit Communications Systems agreement

Wanted: your ideas for ESA's future space missions

GMV announces the merger of its UK Company and NSL

STELLAR CHEMISTRY
Giant particle accelerator in the sky

Making waves in space

Announcing Homestead: satellite ground station coming soon to Chippewa County

Earth's Van Allen radiation belts double as particle accelerator

STELLAR CHEMISTRY
Scientists find gas on Venus linked to life on Earth

How protoplanetary rings form in primordial gas clouds

A warm Jupiter orbiting a cool star

Venus is one stop in our search for life

STELLAR CHEMISTRY
Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other

Atomistic modelling probes the behavior of matter at the center of Jupiter

Technology ready to explore subsurface oceans on Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.