. 24/7 Space News .
TIME AND SPACE
Magnets for the second dimension
by Staff Writers
Zurich, Switzerland (SPX) Nov 12, 2019

This is a dipole magnet and quadrupole module in diagram form.

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board.

Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to form two-dimensional shapes. The new building blocks, which the scientists call modules, are not dipolar but quadrupolar, which means they each have two north poles and two south poles. Inside each of the modules, which are 3D printed in plastic, there are two small conventional dipole magnets with their equal poles facing each other (see picture).

The building blocks can be assembled like little chess boards to form any two-dimensional shapes. It works like this: Because the south and north poles attract each other, a quadrupole building block with its two south poles facing left and right will attract, on each of its four sides, a building block that is rotated by 90 degrees so its north poles on face left and right.

Building on this principle, the scientists made coloured modules with an edge length of just over two millimetres. They assembled them into pixel art emojis to demonstrate what the modules can do. However, possible use cases go way beyond such gimmicks. "We're particularly interested in applications in the field of soft robotics," says Hongri Gu, a doctoral student in Professor Bradley Nelson's group at ETH and lead author of the paper that the scientists recently published in Science Robotics.

Quadrupole and dipole in the same building block
The quadrupole dominates the magnetic properties of the modules. It is a little more complicated than that, though, because in addition to the strong quadrupole, the scientists also built a weak dipole into the building blocks. They achieved this by arranging the little magnets in the module at a slight angle to each other rather than parallel (see picture).

"This causes the modules to align themselves with an external magnetic field, like a compass needle does," Gu explains. "With a variable magnetic field, we can then move the shapes we have built out of the modules. Add in some flexible connectors and it's even possible to build robots that can be controlled by a magnetic field."

Gu says that their work was initially about developing the new principle. It is size-independent, he says, meaning that there is no reason why much smaller quadrupole modules couldn't be developed. The scientists are also studying how the modules could be used to combine a linear structure into a multidimensional object with the help of a magnetic field.

This is something that could be of use in the medicine in the future: it is conceivable that objects such as stents could be formed from a thread consisting of such modules. The thread could be inserted into the body in a relatively simple, minimally invasive procedure through a tiny opening and then a magnetic field applied to assemble it into the final multidimensional structure inside the body.

Research Report: "Magnetic quadrupole assemblies with arbitrary shapes and magnetizations"


Related Links
ETH Zurich
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Light-based 'tractor beam' assembles materials at the nanoscale
Seattle WA (SPX) Nov 05, 2019
Modern construction is a precision endeavor. Builders must use components manufactured to meet specific standards - such as beams of a desired composition or rivets of a specific size. The building industry relies on manufacturers to create these components reliably and reproducibly in order to construct secure bridges and sound skyscrapers. Now imagine construction at a smaller scale - less than 1/100th the thickness of a piece of paper. This is the nanoscale. It is the scale at which scientists ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cygnus NG-12 cargo vehicle looking good on arrival

Voyager 2 illuminates boundary of interstellar space

Iron Curtain to green haven: A mountain village transformed

Boeing tests space crew capsule, reports problem with parachute

TIME AND SPACE
British hypersonic engine passes key test

NASA science, cargo heads to Space Station on Northrop Grumman mission

Air-breathing engine precooler achieves record-breaking Mach 5 performance

New rocket fairing design offers smoother quieter ride

TIME AND SPACE
Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

TIME AND SPACE
China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

TIME AND SPACE
European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

SpaceX to launch 42,000 satellites

TIME AND SPACE
New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

NASA Microgap-Cooling technology immune to gravity effects and ready for spaceflight

New printer creates extremely realistic colorful holograms

Drexel researchers develop coal ash aggregate that helps concrete cure

TIME AND SPACE
The most spectacular celestial vision you'll never see

A new spin on life's origin?

Worldwide observations confirm nearby 'lensing' exoplanet

Even 'goldilocks' exoplanets need a well-behaved star

TIME AND SPACE
Juice cast in gold

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.