24/7 Space News
ROBO SPACE
Magnetic robots walk, crawl, and swim
Video: Magnetically actuated fiber-based soft robots (Source: MIT)
Magnetic robots walk, crawl, and swim
by Jennifer Michalowski for McGovern Institute
Boston MA (SPX) Jul 12, 2023

MIT scientists have developed tiny, soft-bodied robots that can be controlled with a weak magnet. The robots, formed from rubbery magnetic spirals, can be programmed to walk, crawl, swim - all in response to a simple, easy-to-apply magnetic field.

"This is the first time this has been done, to be able to control three-dimensional locomotion of robots with a one-dimensional magnetic field," says Professor Polina Anikeeva, whose team published an open-access paper on the magnetic robots June 3 in the journal Advanced Materials. "And because they are predominantly composed of polymer and polymers are soft, you don't need a very large magnetic field to activate them. It's actually a really tiny magnetic field that drives these robots," adds Anikeeva, who is a professor of materials science and engineering and brain and cognitive sciences at MIT, a McGovern Institute for Brain Research associate investigator, as well as the associate director of MIT's Research Laboratory of Electronics and director of MIT's K. Lisa Yang Brain-Body Center.

The new robots are well suited to transport cargo through confined spaces and their rubber bodies are gentle on fragile environments, opening the possibility that the technology could be developed for biomedical applications. Anikeeva and her team have made their robots millimeters long, but she says the same approach could be used to produce much smaller robots.

Engineering magnetic robots
Anikeeva says that until now, magnetic robots have moved in response to moving magnetic fields. She explains that for these models, "if you want your robot to walk, your magnet walks with it. If you want it to rotate, you rotate your magnet." That limits the settings in which such robots might be deployed. "If you are trying to operate in a really constrained environment, a moving magnet may not be the safest solution. You want to be able to have a stationary instrument that just applies magnetic field to the whole sample," she explains.

Youngbin Lee PhD '22, a former graduate student in Anikeeva's lab, engineered a solution to this problem. The robots he developed in Anikeeva's lab are not uniformly magnetized. Instead, they are strategically magnetized in different zones and directions so a single magnetic field can enable a movement-driving profile of magnetic forces.

Before they are magnetized, however, the flexible, lightweight bodies of the robots must be fabricated. Lee starts this process with two kinds of rubber, each with a different stiffness. These are sandwiched together, then heated and stretched into a long, thin fiber. Because of the two materials' different properties, one of the rubbers retains its elasticity through this stretching process, but the other deforms and cannot return to its original size. So when the strain is released, one layer of the fiber contracts, tugging on the other side and pulling the whole thing into a tight coil. Anikeeva says the helical fiber is modeled after the twisty tendrils of a cucumber plant, which spiral when one layer of cells loses water and contracts faster than a second layer.

A third material - one whose particles have the potential to become magnetic - is incorporated in a channel that runs through the rubbery fiber. So once the spiral has been made, a magnetization pattern that enables a particular type of movement can be introduced.

"Youngbin thought very carefully about how to magnetize our robots to make them able to move just as he programmed them to move," Anikeeva says. "He made calculations to determine how to establish such a profile of forces on it when we apply a magnetic field that it will actually start walking or crawling."

To form a caterpillar-like crawling robot, for example, the helical fiber is shaped into gentle undulations, and then the body, head, and tail are magnetized so that a magnetic field applied perpendicular to the robot's plane of motion will cause the body to compress. When the field is reduced to zero, the compression is released, and the crawling robot stretches. Together, these movements propel the robot forward. Another robot in which two foot-like helical fibers are connected with a joint is magnetized in a pattern that enables a movement more like walking.

Biomedical potential
X
This precise magnetization process generates a program for each robot and ensures that that once the robots are made, they are simple to control. A weak magnetic field activates each robot's program and drives its particular type of movement. A single magnetic field can even send multiple robots moving in opposite directions, if they have been programmed to do so. The team found that one minor manipulation of the magnetic field has a useful effect: With the flip of a switch to reverse the field, a cargo-carrying robot can be made to gently shake and release its payload.

Anikeeva says she can imagine these soft-bodied robots - whose straightforward production will be easy to scale up - delivering materials through narrow pipes, or even inside the human body. For example, they might carry a drug through narrow blood vessels, releasing it exactly where it is needed. She says the magnetically-actuated devices have biomedical potential beyond robots as well, and might one day be incorporated into artificial muscles or materials that support tissue regeneration.

Research Report:"Magnetically Actuated Fiber-Based Soft Robots"

Related Links
McGovern Institute for Brain Research
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
ChatGPT dragged to US court over AI copyright
Washington (AFP) July 10, 2023
US comedian Sarah Silverman and two other authors have sued Open AI over copyright infringement in the latest pushback by creatives since the company's release of ChatGPT took the world by storm. The plaintiffs accuse the San Francisco company of using their works to train their artificial intelligence models without permission, adding to a series of cases that could complicate the development of tech world's biggest new trend. The trio also filed a suit against Facebook parent company Meta, who ... read more

ROBO SPACE
RTX selected for crossover task order under NASA xEVAS contract

NASA expands task orders for spacewalking, moonwalking suits

Sidus Space Joins Forces with Lulav Space to Develop Advanced Star Tracker

Space Act Agreement with NASA will advance UArizona engagement in human spaceflight

ROBO SPACE
Southern Launch reveals new logo and branding

SpaceX's Falcon 9 first-stage booster breaks the record on its 16th flight

LandSpace to launch methane-propelled rocket

PLD Space wins the aerospace public-private partnership contract promoted by Spanish Government to develop a micro launcher

ROBO SPACE
First CHAPEA Crew Begins 378-Day Mission

Martian dunes eroded by a shift in prevailing winds after the planet's last ice age

Heading toward a cluster of craters: Sols 3880-3881

Ingenuity phones home

ROBO SPACE
Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

ROBO SPACE
Saudi Space Commission holds several meetings with Chinese space companies

Radio telescope observations confirm unintended radiation from large satellite constellations

Commanding role for Andreas in space

ESA unveils its comprehensive, high-resolution image library in a revamped platform

ROBO SPACE
DARPA seeks input on novel methods to separate, purify rare earth elements

iQPS initiates a full-scale study to leverage SkyCompass-1 optical data relay service

EU, Japan talk cooperation on raw materials

High-Velocity Impacts Explored in Experimental Study

ROBO SPACE
Study increases probability of finding water on other worlds by x100

'Like a mirror': Astronomers identify most reflective exoplanet

Astronomers discover elusive planet responsible for spiral arms around its star

Preventing interplanetary pollution that could pose a threat to life on Earth and other planets

ROBO SPACE
First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Juno captures lightning bolts above Jupiter's north pole

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.