. 24/7 Space News .
SHAKE AND BLOW
Machine listening for earthquakes
by Staff Writers
New York NY (SPX) May 24, 2018

File image.

For all that seismologists have learned about earthquakes, new technologies show how much remains to be discovered. In a new study in Science Advances, researchers at Columbia University show that machine learning algorithms could pick out different types of earthquakes from three years of earthquake recordings at The Geysers in California, one of the world's oldest and largest geothermal reservoirs.

The repeating patterns of earthquakes appear to match the seasonal rise and fall of water-injection flows into the hot rocks below, suggesting a link to the mechanical processes that cause rocks to slip or crack, triggering an earthquake.

"It's a totally new way of studying earthquakes," said study coauthor Benjamin Holtzman, a geophysicist at Columbia's Lamont-Doherty Earth Observatory. "These machine learning methods pick out very subtle differences in the raw data that we're just learning to interpret."

The approach is novel in several ways. The researchers assembled a catalog of 46,000 earthquake recordings, each represented as energy waves in a seismogram. They then mapped changes in the waves' frequency through time, which they plotted as a spectrogram - a kind of musical roadmap of the waves' changing pitches, were they to be converted to sound. Seismologists typically analyze seismograms to estimate an earthquake's magnitude and where it originated.

But looking at an earthquake's frequency information instead allowed the researchers to apply machine-learning tools that can pick out patterns in music and human speech with minimal human input. With these tools, the researchers reduced each earthquake to a spectral "fingerprint" reflecting its subtle differences from the other quakes, and then used a clustering algorithm to sort the fingerprints into groups.

The machine-learning assist helped researchers make the link to the fluctuating amounts of water injected belowground during the energy-extraction process, giving the researchers a possible explanation for why the computer clustered the signals as it did.

"The work now is to examine these clusters with traditional methods and see if we can understand the physics behind them," said study coauthor Felix Waldhauser, a seismologist at Lamont-Doherty. "Usually you have a hypothesis and test it. Here you're building a hypothesis from a pattern the machine has found."

If the earthquakes in different clusters can be linked to the three mechanisms that typically generate earthquakes in a geothermal reservoir - shear fracture, thermal fracture and hydraulic cracking - it could be possible, the researchers say, to boost power output in geothermal reservoirs.

If engineers can understand what's happening in the reservoir in near real-time, they can experiment with controlling water flows to create more small cracks, and thus, heated water to generate steam and eventually electricity. These methods could also help reduce the likelihood of triggering larger earthquakes - at The Geysers, and anywhere else fluid is pumped underground, including at fracking-fluid disposal sites. Finally, the tools could help identify the warning signs of a big one on its way - one of the holy grails of seismology.

The research grew out of an unusual artistic collaboration. As a musician, Holtzman had long been attuned to the strange sounds of earthquakes. With sound designer Jason Candler, Holtzman had converted the seismic waves of recordings of notable earthquakes into sounds, and then speeded them up to make them intelligible to the human ear. Their collaboration, with study coauthor Douglas Repetto, became the basis for Seismodome, a recurring show at the American Museum of Natural History's Hayden Planetarium that puts people inside the earth to experience the living planet.

As the exhibit evolved, Holtzman began to wonder if the human ear might have an intuitive grasp of earthquake physics. In a series of experiments, he and study coauthor Arthur Pate, then a postdoctoral researcher at Lamont-Doherty, confirmed that humans could distinguish between temblors propagating through the seafloor or more rigid continental crust, and originating from a thrust or strike-slip fault.

Encouraged, and looking to expand the research, Holtzman reached out to study coauthor John Paisley, an electrical engineering professor at Columbia Engineering and Columbia's Data Science Institute. Holtzman wanted to know if machine-learning tools might detect something new in a gigantic dataset of earthquakes. He decided to start with data from The Geysers because of a longstanding interest in geothermal energy.

"It was a typical clustering problem," says Paisley. "But with 46,000 earthquakes it was not a straightforward task."

Paisley came up with a three-step solution. First, a type of topic modeling algorithm picked out the most common frequencies in the dataset. Next, another algorithm identified the most common frequency combinations in each 10-second spectrogram to calculate its unique acoustic fingerprint.

Finally, a clustering algorithm, without being told how to organize the data, grouped the 46,000 fingerprints by similarity. Number crunching that might have taken a computer cluster several weeks was done in a few hours on a laptop thanks to another tool, stochastic variational inference, Paisley had earlier helped develop.

When the researchers matched the clusters against average monthly water-injection volumes across The Geysers, a pattern jumped out: A high injection rate in winter, as cities send more run-off water to the area, was associated with more earthquakes and one type of signal. A low summertime injection rate corresponded to fewer earthquakes, and a separate signal, with transitional signals in spring and fall.

The researchers plan to next apply these methods to recordings of other naturally occurring earthquakes as well as those simulated in the lab to see if they can link signal types with different faulting processes. Another study published last year in Geophysical Research Letters suggests they are on a promising track.

A team led by Los Alamos researcher Paul Johnson showed that machine learning tools could pick out a subtle acoustic signal in data from laboratory experiments and predict when the next microscopic earthquake would occur. Though natural faults are more complex, the research suggests that machine learning could lead to insights for identifying precursors to big earthquakes.


Related Links
The Earth Institute at Columbia University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
Continental shelf shape leads to long-lasting tsunami edge waves during Mexican earthquake
San Francisco CA (SPX) May 22, 2018
The shape of the continental shelf off the southern Mexican coast played a role in the formation of long-lasting tsunami edge waves that appeared after last September's magnitude 8.2 earthquake, according to researchers speaking at the SSA 2018 Annual Meeting. Edge waves are coastal waves generated by a larger tsunami wave. They travel back and forth parallel to a shoreline. They can be an important part of overall tsunami hazard, depending on how big the edge waves are and how long they last, sai ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
NASA sends new research on Orbital ATK mission to Space Station

Privatize the International Space Station? Not so fast, Congress tells Trump

US May Order Russian Soyuz Spacecraft to Fly Astronauts to ISS in 2020 - Source

Cement, extreme cold experiments head to space aboard Cygnus cargo ship

SHAKE AND BLOW
Two sportscar-sized satellites in orbit to measure Earth's water

Russia May Renew 'Satan' Missile Launches to Place Satellites In Orbit

Russia's formidable Satan Missile converted into carrier rocket

US indirectly confirms existence of Russia's hypersonic weapons

SHAKE AND BLOW
NASA engineers teach Mars rover Curiosity to drill again

Curiosity Mars rover back on drill duty

NASA's InSight Steers Toward Mars

Mars Society launches Kickstarter to create MarsVR Crew Training Program

SHAKE AND BLOW
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

SHAKE AND BLOW
From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

SHAKE AND BLOW
New material detects the amount of UV radiation and helps monitor radiation dose

Focus on space debris

Space Station Panic

Astonishing effect enables better palladium catalysts

SHAKE AND BLOW
Extrasolar asteroid has been orbiting sun for over 4 billion years

Planet hunter snaps test image on Lunar flyby on route to final orbit

Orbital variations can trigger 'snowball states' on exoplanets

Amateur astronomer's data helps scientists discover a new exoplanet

SHAKE AND BLOW
OSL Optics to help unlock the secrets of Jupiter's Icy Moons

SwRI scientists introduce cosmochemical model for Pluto formation

Jupiter: A New Perspective

Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.