. 24/7 Space News .
CHIP TECH
MIT turns "magic" material into versatile electronic devices
by Elizabeth A. Thomson for MIT News
Boston MA (SPX) May 21, 2021

MIT graduate student Daniel Rodan-Legrain holds up a chip carrier used in his work developing new graphene-based electronic devices. He stands next to a dilution refrigerator similar to that used in the work.

MIT researchers and colleagues have turned a "magic" material composed of atomically thin layers of carbon into three useful electronic devices. Normally, such devices, all key to the quantum electronics industry, are created using a variety of materials that require multiple fabrication steps. The MIT approach automatically solves a variety of problems associated with those more complicated processes.

As a result, the work could usher in a new generation of quantum electronic devices for applications including quantum computing. Further, the devices can be superconducting, or conduct electricity without resistance. They do so, however, through an unconventional mechanism that, with further study, could give new insights into the physics of superconductivity. The researchers report their results in the May 3 issue of Nature Nanotechnology.

"In this work we have demonstrated that magic-angle graphene is the most versatile of all superconducting materials, allowing us to realize in a single system a multitude of quantum electronic devices. Using this advanced platform, we have been able to explore for the first time novel superconducting physics that only appears in two dimensions," says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT and leader of the work. Jarillo-Herrero is also affiliated with MIT's Materials Research Laboratory.

A magic angle
The new "magic" material is based on graphene, a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure. Since the first unambiguous isolation of graphene in 2004, interest in this material has skyrocketed due to its unique properties. For example, it is stronger than diamond, transparent, and flexible. It also easily conducts both heat and electricity.

In 2018, the Jarillo-Herrero group made a startling discovery involving two layers of graphene, one placed on top of the other. Those layers, however, weren't exactly on top of each other; rather, one was slightly rotated at a "magic angle" of 1.1 degrees.

The resulting structure allowed the graphene to be either a superconductor or an insulator (which prevents the flow of electrical current), depending on the number of electrons in the system as provided by an electric field. Essentially, the team was able to tune graphene into completely different states by changing the voltage at the turn of a knob.

The overall "magic" material, formally known as magic-angle twisted bilayer graphene (MATBG), has generated intense interest in the research community, even inspiring a new field known as twistronics. It is also at the heart of the current work.

In 2018, Jarillo-Herrero and coworkers changed the voltage supplied to the magic material via a single electrode, or metallic gate. In the current work, "we introduced multiple gates to subject different areas of the material to different electric fields," says Daniel Rodan-Legrain, a graduate student in physics and lead author of the Nature Nanotechnology paper.

Suddenly, the team was able to tune different sections of the same magic material into a plethora of electronic states, from superconducting to insulating to somewhere in between. Then, by applying gates in different configurations, they were able to reproduce all of the parts of an electronic circuit that would ordinarily be created with completely different materials.

Working devices
Ultimately, the team used this approach to create three different working quantum electronic devices. These devices include a Josephson junction, or superconducting switch. Josephson junctions are the building blocks of the quantum bits, or qubits, behind superconducting quantum computers. They also have a variety of other applications, such as incorporation into devices that can make very precise measurements of magnetic fields.

The team also created two related devices: a spectroscopic tunneling device and a single-electron transistor, or a very sensitive device for controlling the movement of electricity, literally one electron at a time. The former is key to studying superconductivity, while the latter has a variety of applications, in part because of its extreme sensitivity to electric fields.

All three devices benefit from being made of a single electrically tunable material. Those made conventionally, of multiple materials, suffer from a variety of challenges. For example, different materials may be incompatible. "Now, if you're dealing with one single material, those problems disappear," says Rodan-Legrain.

William Oliver, an MIT associate professor in the Department of Electrical Engineering and Computer Science who was not involved in the research, says: "MATBG has the remarkable property that its electrical properties - metallic, superconducting, insulating, etc. - can be determined by applying a voltage to a nearby gate.

In this work, Rodan-Legrain et al. have shown that they can make rather complicated devices comprising superconducting, normal, and insulating regions by electrical gating of a single flake of MATBG. The conventional approach would be to fabricate the device in several steps using different materials. With MATBG, the resulting devices are fully reconfigurable by simply changing the gate voltages."

Toward the future
The work described in the Nature Nanotechnology paper paves the way for many potential future advances. For example, says Rodan-Legrain, it could be used to create the first voltage-tunable qubit from a single material, which could be applied in future quantum computers.

In addition, because the new system enables more detailed studies of the enigmatic superconductivity in MATBG, and is relatively easy to work with, the team is hopeful that it could allow insights into the creation of high-temperature superconductors. Current superconductors can only operate at very low temperatures. "That is actually one of the big hopes [behind our magic material]," says Rodan-Legrain. "Can we use it as a kind of Rosetta Stone" to better understand its high-temperature cousins?

In a glimpse into how science works, Rodan-Legrain describes the surprises the team encountered while conducting the research. For example, some of the data from the experiments didn't correspond to the team's initial expectations.

That's because the Josephson junctions they created using atomically thin MATGB were two-dimensional, and thus had a notably different behavior from their 3D conventional counterparts. "It was great having the data come through, seeing them, being puzzled about them, and then further understanding and making sense of what we saw."

In addition to Jarillo-Herrero and Rodan-Legrain, additional authors of the paper are Yuan Cao, a postdoc in MIT's Materials Research Laboratory (MRL); Jeong Min Park, a graduate student in the Department of Chemistry; Sergio C. de la Barrera, a postdoc in the MRL; Mallika T. Randeria, a Pappalardo Postdoctoral Fellow in the Department of Physics; and Kenji Watanabe and Takashi Taniguchi, both of the National Institute for Materials Science in Japan. (Rodan-Legrain, Cao, and Park were equal contributors to the paper.)

This work was supported by the U.S. National Science Foundation, the U.S. Department of Energy, the U.S. Army Research Office, the Fundacio Bancaria "la Caixa," the Gordon and Betty Moore Foundation, the Fundacion Ramon Areces, an MIT Pappalardo Fellowship, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.


Related Links
Materials Research Laboratory at MIT
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Advance may enable "2D" transistors for tinier microchip components
Boston MA (SPX) May 17, 2021
Moore's Law, the famous prediction that the number of transistors that can be packed onto a microchip will double every couple of years, has been bumping into basic physical limits. These limits could bring decades of progress to a halt, unless new approaches are found. One new direction being explored is the use of atomically thin materials instead of silicon as the basis for new transistors, but connecting those "2D" materials to other conventional electronic components has proved difficult. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Scientists find new use for valve invented by Nikola Tesla 100 years ago

Google teams with Samsung for wearables platform

Russia to send film crew, Japanese billionaire to space

NASA Invests $105 Million in US Small Business Technology Development

CHIP TECH
Bitcoin tumble slows with help from Elon Musk

First Ariane 6 fairing at Europe's Spaceport

SpaceX signs deal with Google Cloud for satellite broadband

3D printed RL10C-X engine demonstrates full mission capability during altitude hot fire test series

CHIP TECH
Seeing NASA's Ingenuity Mars Helicopter Fly in 3D

Perseverance's Robotic Arm Starts Conducting Science

Perseverance rover captures sound of Ingenuity flying on Mars

Volcanoes on Mars could be active, raise possibility of recent habitable conditions

CHIP TECH
Tianzhou 2, carrier rocket transported to launchpad for liftoff

'Nihao Mars': China's Zhurong rover touches down on Red Planet

China wants to send spacecraft to edge of solar system to mark 100th year of PRC

China's space station takes shared future concept to space

CHIP TECH
SpaceX launches 52 Starlink satellites, two other payloads

Xplore opens 22,000 sq ft satellite manufacturing facility to advance satellite production

Spacecraft magnetic valve used to fill drinks

SpaceX launches 60 Starlink satellites from Florida

CHIP TECH
EU, US move to end steel row and point to China

NASA additively manufactured rocket engine passes cold spray, hot fire tests

ABC Solar Augmented Reality Assistant for Inverter Repair with AI presented for DARPA Task Mastery Bid

Laser communications powers more data than ever before

CHIP TECH
Alien radioactive element prompts creation rethink

Coldplay beam new song into space in chat with French astronaut

How planets form controls elements essential for life

First ever discovery of methanol in a warm planet-forming disk

CHIP TECH
Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.