They also developed a method to clamp the separate parts together in a way that avoids misalignments which could hamper performance and ensures the device remains watertight.
In the end, their 3D-printed prototype was able to generate thrust more efficiently than larger, more expensive chemical rockets and outperformed existing droplet electrospray engines.
The researchers also investigated how adjusting the pressure of propellant and modulating the voltage applied to the engine affected the flow of droplets. Surprisingly, they achieved a wider range of thrust by modulating the voltage. This could eliminate the need for a complex network of pipes, valves, or pressure signals to regulate the flow of liquid, leading to a lighter, cheaper electrospray thruster that is also more efficient.
"We were able to show that a simpler thruster can achieve better results," Velasquez-Garcia says.
The researchers want to continue exploring the benefits of voltage modulation in future work. They also want to fabricate denser and larger arrays of emitter modules. In addition, they may explore the use of multiple electrodes to decouple the process of triggering of the electrohydrodynamic ejection of propellant from setting up the shape and speed of the emitted jet. In the long run, they also hope to demonstrate a CubeSat that utilizes a fully 3D-printed electrospray engine during its operation and deorbiting.
Research Report:High-Impulse, Modular, 3D-Printed CubeSat Electrospray Thrusters Throttleable via Pressure and Voltage Control
Related Links
Microsystems Technology Laboratories
Space Technology News - Applications and Research
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |