. 24/7 Space News .
MERCURY RISING
MESSENGER Shows How a Spacecraft Could End Neutron Lifetime Stalemate
by Staff Writers
Laurel MD (SPX) Jun 12, 2020

Artist's impression of NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit at Mercury. MESSENGER also passed Venus, collecting neutron data for the first time.

Neutrons aren't a model of resilience when it comes to living a single life. Strip one from an atom's nucleus and it will quickly disintegrate into an electron and a proton. But scientists can't determine how quickly, despite decades of trying, and that's problematic because knowing that lifetime is key to understanding the formation of the elements after the Big Bang.

Now, a team of researchers from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Durham University in England has provided a way that could end the decades-long stalemate. Using data from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, the team shows that the lifetime of a neutron can be measured from space. The findings were reported June 11 in the journal Physical Review Research.

"This is the first time anyone has ever measured the neutron lifetime from space," said Jack Wilson, a scientist at APL and the study's lead author. "It proves the feasibility of this method, which could one day be the way to resolve this anomaly."

A Persisting Mystery
Since the early 1990s, scientists have disagreed about how long lone neutrons last, mainly because the two methods used so far give highly precise results that don't line up.

The "bottle" method traps neutrons in a bottle and tracks how long they take to radioactively decay, which on average is around 14 minutes and 39 seconds. The "beam" technique instead fires a beam of neutrons and tallies the number of protons created from radioactive decay. On average, this takes about 14 minutes and 48 seconds - nine seconds longer than the bottle method.

Nine seconds isn't much, but relative to the uncertainty in either method's measurements - at most two seconds - it's enormous.

Researchers using the bottle and beam measurements continue working to resolve the discrepancy with their techniques. But since 1990, researchers have discussed an alternative way to measure the neutron lifetime: from space.

Cosmic rays colliding with atoms on a planet's surface or atmosphere set loose neutrons that gradually wind into outer space against the pull of gravity. The farther the neutrons travel from the planet's surface, the more time passes, and the more neutrons will radioactively decay. By comparing the number of neutrons at various altitudes, a spacecraft could estimate the neutron lifetime.

No mission or instrument has ever been funded to put the idea into practice. But MESSENGER happened to have the right kind of tool that collected the right kind of data.

"Of all past spacecraft measurements, MESSENGER's are well suited to measuring the neutron lifetime," said David Lawrence, an APL planetary scientist and study coauthor.

The Spacecraft That Could
MESSENGER carried a neutron spectrometer to detect neutrons scattered off hydrogen atoms in water molecules suspected (and later confirmed) to be frozen at Mercury's poles. On its way to Mercury, though, MESSENGER also collected neutron data for the first time over cloud-strewn Venus.

The spacecraft made observations over a large range of heights above Venus and Mercury. The low-energy neutrons emitted by Venus' atmosphere move at a few kilometers per second. At MESSENGER's altitude - a few hundred to a few thousand kilometers above the planet's surface - the neutrons would have traveled for a time similar to the estimated neutron lifetime.

"It's like a large bottle experiment, but instead of using walls and magnetic fields, we use Venus' gravity to confine neutrons for times comparable to their lifetime," Wilson said.

With funding from the United States Department of Energy Office of Science, the researchers used models to estimate the number of neutrons MESSENGER would detect above Venus for neutron lifetimes between about 10 and 17 minutes.

When the scientists compared the actual number of detected neutrons with the modeled lifetimes, they found 13 minutes provided the best match.

The team estimated that lifetime could be off by about two minutes due to statistical errors and other uncertainties, such as whether the number of neutrons changes during the day or at different latitudes. Yet within these uncertainties, their estimated neutron lifetime agrees with values from the bottle and beam methods.

"This result shows that even using data from a mission designed to do something entirely different, it's still possible to measure the neutron lifetime from space," said Jacob Kegerreis, a researcher at Durham University and a coauthor on the study.

The Future In Space
The new technique clearly is a major departure from the relative ease of laboratory experiments. But because the uncertainties in space-based measurements are unrelated to those in the lab-based methods, the researchers contend the new technique provides a way to break the tie between the existing measurements.

Making measurements that are more precise will require a dedicated space mission, possibly to Venus, since its thick atmosphere and large mass effectively trap neutrons around the planet, the researchers say. The team is working with internal APL support to understand how to accomplish such a mission.

"We ultimately want to design and build a spacecraft instrument that can make a high-precision measurement of the neutron lifetime," Wilson said, and perhaps finally settle this outstanding mystery.


Related Links
MESSENGER at APL
News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


MERCURY RISING
Earth flyby opens new science opportunities for BepiColombo
Paris (ESA) May 01, 2020
Science instruments aboard the European-Japanese Mercury explorer BepiColombo are in excellent condition to gather high-quality data during the spacecraft's long cruise to the innermost planet of the Solar System despite not having been designed for this purpose, teams collaborating on the mission learned during the spacecraft's April flyby of Earth. The orbit-tightening manoeuvre, which saw BepiColombo come as close as 12 689 km to our planet's surface at 04:25 UTC on 10 April 2020, provided an o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MERCURY RISING
First space tourists will face big risks, as private companies gear up for paid suborbital flights

Kathy Lueders Selected to Lead NASA's Human Spaceflight Office

DDC-I's Deos RTOS selected by MDA to develop communications system for Dream Chaser cargo system

High School Students Build Lockers for Trip to the International Space Station

MERCURY RISING
Rocket Lab launches Boston University's magnetosphere experiment

Arianespace Vega mission to perform Small Spacecraft Mission Service Proof of Concept flight

Winds scrub Rocket Lab launch from New Zealand

Kids are building rockets from their bedrooms

MERCURY RISING
First Arab mission to Mars designed to inspire youth

NASA's Mars Rover Drivers Need Your Help

Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

MERCURY RISING
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

MERCURY RISING
SpaceX, Amazon, OneWeb seek communications dominance in space

SpaceX launches 58 Starlink, 3 SkySat satellites from Florida

York Space Systems and LatConnect 60 to deploy a small satellite constellation

Broadband players lobby for uninterrupted foreign funds in India's satellite missions

MERCURY RISING
Speed of space storms key to protecting astronauts and satellites from radiation

New technique for engineering living materials and patterns

How magnetic fields and 3D printers will create the pills of tomorrow

A breakthrough in developing multi-watt terahertz lasers

MERCURY RISING
Mysterious interstellar visitor was probably a 'dark hydrogen iceberg,' not aliens

Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

Presence of airborne dust could signify increased habitability of distant planets

MERCURY RISING
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.