. | . |
Longest microwave quantum link by Staff Writers Zurich, Switzerland (SPX) Mar 10, 2020
Collaboration is everything - also in the quantum world. To build powerful quantum computers in the future, it will be necessary to connect several smaller computers to form a kind of cluster or local network (LAN). Since those computers work with quantum mechanical superposition states, which contain the logical values "0" and "1" at the same time, the links between them should also be "quantum links". The longest such link to date based on microwaves, at five metres long, was recently built in the laboratory of Andreas Wallraff, professor at the Quantum Device Lab at ETH Zurich. The researchers were scheduled to present their results on it at the annual meeting of the American Physical Society in Denver. Because of the current epidemic situation this conference was cancelled at short notice. Instead, the scientists now report their results in a virtual substitute conference.
Important for future quantum-LANs Currently there are computers with a few dozen quantum bits or qubits, but several hundreds of thousands of them are almost impossible to accommodate in existing devices. One reason for this is that qubits based on superconducting electrical oscillators, such as those used in the quantum chips in Wallraff's lab (and also by IBM and Google), need to be cooled down to temperatures close to the absolute zero of -273,15 degrees Celsius. This supresses thermal perturbations that would cause the quantum states to lose their superposition property - this is known as decoherence - and hence errors in the quantum calculations to occur.
Extreme cold against decoherence This happens by means of microwave photons that are emitted by one superconducting oscillator and received by another. In between, they fly through a waveguide, which is a metal cavity a few centimetres in width, which also needs to be strongly cooled so that the quantum states of the photons are not influenced. Each of the quantum chips is cooled down over several days in a cryostat (an extremely powerful refrigerator), using compressed and also liquid helium, to a few hundredths of a degree above absolute zero. To that end, the five-metre waveguide that creates the quantum link was equipped with a shell consisting of several layers of copper sheet. Each of those sheets acts as a heat shield for the different temperature stages of the cryostat: -223 degrees, -269 degrees, -272 degrees and finally -273,1 degrees. Altogether, those heat shields alone weigh around a quarter of a tonne.
No "table-top" experiment "A lot of development work has gone into this, and ETH is an ideal place for building such an ambitious apparatus. It's a kind of mini-CERN that we first had to build over several years in order to be able to do interesting things with it now." Apart from the three PhD students who carried out the experiments, several engineers and technicians, also in the workshops at ETH and at the Paul Scherrer Institute (PSI), were involved in producing and constructing the quantum link.
Entangled states and "Bell tests" Such entangled states, in which measuring one qubit instantaneously influences the result of a measurement on the other qubit, can also be used for tests in basic quantum research. In those "Bell tests", the qubits must be far enough apart from each other, so that any information transfer at the speed of light can be ruled out. While Wallraff and his collaborators are performing experiments with the new link, they have already started working on even longer quantum links. Already a year ago they were able to sufficiently cool down a ten-metre link, but without doing any quantum experiments with it. Now they are working on a 30-metre quantum link, for which a room at ETH has been specially prepared.
Quantum researchers able to split one photon into three Waterloo, Canada (SPX) Feb 28, 2020 Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo report the first occurrence of directly splitting one photon into three. The occurrence, the first of its kind, used the spontaneous parametric down-conversion method (SPDC) in quantum optics and created what quantum optics researchers call a non-Gaussian state of light. A non-Gaussian state of light is considered a critical ingredient to gain a quantum advantage. "It was understood that there were limit ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |