. 24/7 Space News .
STELLAR CHEMISTRY
Longest microwave quantum link
by Staff Writers
Zurich, Switzerland (SPX) Mar 10, 2020

The ETH quantum link in Andreas Wallraff's laboratory. The tube at the centre contains the strongly cooled waveguide that connects the two quantum chips in their cryostats via microwave photons.

Collaboration is everything - also in the quantum world. To build powerful quantum computers in the future, it will be necessary to connect several smaller computers to form a kind of cluster or local network (LAN). Since those computers work with quantum mechanical superposition states, which contain the logical values "0" and "1" at the same time, the links between them should also be "quantum links".

The longest such link to date based on microwaves, at five metres long, was recently built in the laboratory of Andreas Wallraff, professor at the Quantum Device Lab at ETH Zurich. The researchers were scheduled to present their results on it at the annual meeting of the American Physical Society in Denver. Because of the current epidemic situation this conference was cancelled at short notice. Instead, the scientists now report their results in a virtual substitute conference.

Important for future quantum-LANs
"That's really a milestone for us", Wallraff explains, "since now we can show that quantum-LANs are possible in principle. In the next 10 to 20 years, quantum computers will probably increasingly rely on them."

Currently there are computers with a few dozen quantum bits or qubits, but several hundreds of thousands of them are almost impossible to accommodate in existing devices. One reason for this is that qubits based on superconducting electrical oscillators, such as those used in the quantum chips in Wallraff's lab (and also by IBM and Google), need to be cooled down to temperatures close to the absolute zero of -273,15 degrees Celsius.

This supresses thermal perturbations that would cause the quantum states to lose their superposition property - this is known as decoherence - and hence errors in the quantum calculations to occur.

Extreme cold against decoherence
"The challenge was to connect two of those superconducting quantum chips in such a way as to be able to exchange superposition states between them with minimal decoherence", says Philipp Kurpiers, a former PhD student in Wallraff's group.

This happens by means of microwave photons that are emitted by one superconducting oscillator and received by another. In between, they fly through a waveguide, which is a metal cavity a few centimetres in width, which also needs to be strongly cooled so that the quantum states of the photons are not influenced.

Each of the quantum chips is cooled down over several days in a cryostat (an extremely powerful refrigerator), using compressed and also liquid helium, to a few hundredths of a degree above absolute zero. To that end, the five-metre waveguide that creates the quantum link was equipped with a shell consisting of several layers of copper sheet. Each of those sheets acts as a heat shield for the different temperature stages of the cryostat: -223 degrees, -269 degrees, -272 degrees and finally -273,1 degrees. Altogether, those heat shields alone weigh around a quarter of a tonne.

No "table-top" experiment
"So, this is definitely not a "table-top" experiment anymore that one can put together on a small workbench", Wallraff says.

"A lot of development work has gone into this, and ETH is an ideal place for building such an ambitious apparatus. It's a kind of mini-CERN that we first had to build over several years in order to be able to do interesting things with it now." Apart from the three PhD students who carried out the experiments, several engineers and technicians, also in the workshops at ETH and at the Paul Scherrer Institute (PSI), were involved in producing and constructing the quantum link.

Entangled states and "Bell tests"
The physicists at ETH not only showed that the quantum link can be sufficiently cooled down, but also that it can actually be used to reliably transmit quantum information between two quantum chips. To demonstrate this, they created an entangled state between the two chips via the quantum link.

Such entangled states, in which measuring one qubit instantaneously influences the result of a measurement on the other qubit, can also be used for tests in basic quantum research. In those "Bell tests", the qubits must be far enough apart from each other, so that any information transfer at the speed of light can be ruled out.

While Wallraff and his collaborators are performing experiments with the new link, they have already started working on even longer quantum links. Already a year ago they were able to sufficiently cool down a ten-metre link, but without doing any quantum experiments with it. Now they are working on a 30-metre quantum link, for which a room at ETH has been specially prepared.


Related Links
ETH Zurich
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Quantum researchers able to split one photon into three
Waterloo, Canada (SPX) Feb 28, 2020
Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo report the first occurrence of directly splitting one photon into three. The occurrence, the first of its kind, used the spontaneous parametric down-conversion method (SPDC) in quantum optics and created what quantum optics researchers call a non-Gaussian state of light. A non-Gaussian state of light is considered a critical ingredient to gain a quantum advantage. "It was understood that there were limit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Singaporean Daren Tang elected to head global patent agency: UN

Insects, seaweed and lab-grown meat could be the foods of the future

'Digital disruption' a game-changer for climate: Future Earth report

Hydrogen Could Make a Green Energy Future Closer than We Think

STELLAR CHEMISTRY
OmegA on track to support certification launch in 2021

US trying to catch up with Russia, China in hypersonics

New generation rocket engines to be tested at Esrange

SpaceX Starship prototype explodes in test again

STELLAR CHEMISTRY
Seismic activity on Mars resembles that found in the Swabian Jura

Ancient meteorite site on Earth could reveal new clues about Mars' past

The seismicity of Mars

Magnetic field at Martian surface ten times stronger than expected

STELLAR CHEMISTRY
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

STELLAR CHEMISTRY
Blast off: space minnow Indonesia eyes celestial success

Kleos Space secures 3M Euro loan agreement with Dubai family office

Europlanet launches 10M euro Research Infrastructure to support planetary science

Boeing buying Russian components for Starliner

STELLAR CHEMISTRY
Magnetic whirls in future data storage devices

Lego's colourful plastic bricks to go green

Cloud data speeds set to soar with aid of laser mini-magnets

Satellite design applied to superyacht

STELLAR CHEMISTRY
Salmon parasite is world's first non-oxygen breathing animal

Hydrogen energy at the root of life

NASA approves development of universe-studying, planet-finding mission

What if mysterious 'cotton candy' planets actually sport rings?

STELLAR CHEMISTRY
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.