. 24/7 Space News .
ENERGY TECH
Lithium-sulfur batteries are one step closer to powering the future
by Staff Writers
Lemont IL (SPX) Jan 09, 2023

Image shows microstructure and elemental mapping (silicon, oxygen and sulfur) of porous sulfur-containing interlayer after 500 charge-discharge cycles in lithium-sulfur cell.

With a new design, lithium-sulfur batteries could reach their full potential. Batteries are everywhere in daily life, from cell phones and smart watches to the increasing number of electric vehicles. Most of these devices use well-known lithium-ion battery technology. And while lithium-ion batteries have come a long way since they were first introduced, they have some familiar drawbacks as well, such as short lifetimes, overheating and supply chain challenges for certain raw materials.

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are researching solutions to these issues by testing new materials in battery construction. One such material is sulfur. Sulfur is extremely abundant and cost effective and can hold more energy than traditional ion-based batteries.

In a new study, researchers advanced sulfur-based battery research by creating a layer within the battery that adds energy storage capacity while nearly eliminating a traditional problem with sulfur batteries that caused corrosion.

A promising battery design pairs a sulfur-containing positive electrode (cathode) with a lithium metal negative electrode (anode). In between those components is the electrolyte, or the substance that allows ions to pass between the two ends of the battery.

Early lithium-sulfur (Li-S) batteries did not perform well because sulfur species (polysulfides) dissolved into the electrolyte, causing its corrosion. This polysulfide shuttling effect negatively impacts battery life and lowers the number of times the battery can be recharged.

To prevent this polysulfide shuttling, previous researchers tried placing a redox-inactive interlayer between the cathode and anode. The term "redox-inactive" means the material does not undergo reactions like those in an electrode. But this protective interlayer is heavy and dense, reducing energy storage capacity per unit weight for the battery. It also does not adequately reduce shuttling. This has proved a major barrier to the commercialization of Li-S batteries.

To address this, researchers developed and tested a porous sulfur-containing interlayer. Tests in the laboratory showed initial capacity about three times higher in Li-S cells with this active, as opposed to inactive, interlayer. More impressively, the cells with the active interlayer maintained high capacity over 700 charge-discharge cycles.

"Previous experiments with cells having the redox-inactive layer only suppressed the shuttling, but in doing so, they sacrificed the energy for a given cell weight because the layer added extra weight," said Guiliang Xu, an Argonne chemist and co-author of the paper. "By contrast, our redox-active layer adds to energy storage capacity and suppresses the shuttle effect."

To further study the redox-active layer, the team conducted experiments at the 17-BM beamline of Argonne's Advanced Photon Source (APS), a DOE Office of Science user facility. The data gathered from exposing cells with this layer to X-ray beams allowed the team to ascertain the interlayer's benefits.

The data confirmed that a redox-active interlayer can reduce shuttling, reduce detrimental reactions within the battery and increase the battery's capacity to hold more charge and last for more cycles. "These results demonstrate that a redox-active interlayer could have a huge impact on Li-S battery development," said Wenqian Xu, a beamline scientist at APS. "We're one step closer to seeing this technology in our everyday lives."

Going forward, the team wants to evaluate the growth potential of the redox-active interlayer technology. "We want to try to make it much thinner, much lighter," Guiliang Xu said.

A paper based on the research appeared in the Aug. 8 issue of Nature Communications. Khalil Amine, Tianyi Li, Xiang Liu, Guiliang Xu, Wenqian Xu, Chen Zhao and Xiao-Bing Zuo contributed to the paper.

This research was sponsored by the DOE's Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office Battery Materials Research Program and the National Research Foundation of Korea.

Research Report:Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy.


Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
New strategy suggested for ultra-long cycle Li-ion battery
Hefei, China (SPX) Jan 09, 2023
In recent years, lithium ion batteries have been widely used in many fields. Compared with traditional lithium ion battery cathode materials, more lithium ions in lithium rich manganese based cathode materials of unit mass participate in energy storage. However, in the process of battery reaction, stress accumulation and lattice oxygen loss will cause some microcracks in lithium rich manganese based materials. The migration of transition metal ions will lead to phase transition of materials and ot ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Russia to send capsule to rescue crew from ISS

Scientific samples, hardware return from the space station for more study

SpaceX Transporter-6 successfully launched Europe's first solar sail mission

Ukraine startups at CES strive to help the nation triumph

ENERGY TECH
SpaceX capsule lands safely on return from ISS

NASA selects experimental space technology concepts for initial study

UK space chiefs vows to try again after failed rocket launch

SpaceX to launch 51 Starlink satellites after weather delay

ENERGY TECH
Researchers develop AI method for mapping planets

Moving along the Marker Band: Sols 3705-3707

A New Year on Mars and a Brand-New Workspace: Sols 3702-3704

A Scuff for the New Year: Sols 3699-3702

ENERGY TECH
First rocket launch of the New Year leaves Wenchang for space

Space contractors release China's launch plans for 2023

China's space exploration spurred by helping humanity

China not in 'space race', industry insiders say

ENERGY TECH
Vast Space becomes the newest member of "Space Beach"

Lynk launches world's 2nd and 3rd commercial Cell-Towers-in-Space

OneWeb to launch 40 satellites with SpaceX

Spire Global launched 6 satellites on SpaceX Transporter-6 Mission

ENERGY TECH
Sweden claims largest discovery of 'crucial' rare-earth elements in Europe

Riot at Chinese-funded nickel plant in Indonesia kills two

Unibap receives order from Thales Alenia Space

Seoul launches ambitious metaverse platform for city services, tourism

ENERGY TECH
NASA wants you to help study planets around other stars

NASA scientists study life origins by simulating a cosmic evolution

Astronomers use 'little hurricanes' to weigh and date planets around young stars

Assembly begins on NASA's next tool to study exoplanets

ENERGY TECH
SwRI scientists find evidence for magnetic reconnection between Ganymede and Jupiter

SwRI delivers innovative instrument for NASA's Europa Clipper mission

PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io

Mix a space juice to celebrate ESA's Juice mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.