. 24/7 Space News .
TIME AND SPACE
Lithium fluoride crystals 'see' heavy ions with high energies
by Staff Writers
Warsaw, Poland (SPX) Aug 23, 2019

Tracks of heavy ions 'imprinted' in lithium fluoride crystals. At the top, spot tracks observed under a fluorescence microscope in plates perpendicular to the heavy ion beam. At the bottom, the ion tracks in the parallel oriented plate (the blurring at both ends of the trace is an artifact of the depth of focus of the microscope). Artificial colors.

Lithium fluoride crystals have recently been used to register the tracks of nuclear particles. Physicists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow have just demonstrated that these crystals are also ideal for detecting tracks of high-energy ions of elements even as heavy as iron.

When a nuclear particle enters into a crystal, it interacts with the atoms or molecules in its crystal network. In certain crystals and under the appropriate conditions, the resulting defect can be a source of weak light - luminescence. At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow research has been conducted on materials showing this type of properties for many years.

One of them is lithium fluoride LiF. Its crystals have recently been used to detect low-energy particles such as alpha particles (helium nuclei). In their latest publication in the Journal of Luminescence, the Cracow-based physicists show that the field of application of lithium fluoride also extends to the detection of particles with significant energies and even includes ions of such heavy elements as iron 56Fe, completely stripped of electrons.

"Lithium fluoride track detectors are simply crystals. Unlike detection devices that monitor near-real time tracks of particles, they are passive detectors. In other words, they work like photographic film. Once crystals are exposed to radiation, we need to use a fluorescence microscope to find out what tracks we have recorded," says Prof. Pawel Bilski (IFJ PAN).

Fluorescent nuclear track detectors have been known for about a decade. So far, they have been made only from appropriately doped Al2O3 aluminium oxide crystals in which, under the influence of radiation, permanent colour centres are created.

Such centres, when excited by light of an appropriate wavelength, emit photons (with lower energies) which make it possible to see the track of a particle under a microscope. In the case of lithium fluoride, the excitation is carried out with blue light and the emission of photons takes place in the red range.

"Detectors with doped aluminium oxide require an expensive confocal microscope with a laser beam and scanning. Tracks in lithium fluoride crystals can be seen with a much cheaper, standard fluorescent microscope", says Prof. Bilski and emphasizes: "Tracks recorded in crystals very accurately reproduce the path of a particle. Other detectors, such as the well-known Wilson chamber, usually widen the track. In the case of LiF crystals, the resolution is restricted only by the diffraction limit."

While the impossibility of observing tracks of particles in near real time is difficult to call an advantage, it does not always have to be a disadvantage. For example, in personal dosimetry, detectors are needed to determine the dose of radiation to which the user has been exposed. These devices must be small and easy to use. The millimetre-sized crystalline lithium fluoride plates meet this requirement perfectly.

This is one of the reasons why these crystals, grown by Czochralski method in the IFJ PAN, can now be found in the European Columbus module of the International Space Station, among many other types of passive detectors. Replaced every six months within the DOSIS 3D experiment, the detectors make it possible to determine the spatial distribution of the radiation dose within the station and its variability over time.

During the latest research, crystalline lithium fluoride plates were exposed to high energy ions. The irradiation was carried out in the HIMAC accelerator in the Japanese city of Chiba. During the bombardment with various ion beams, the energies of particles ranged from 150 megaelectronvolts per nucleon in the case of 4He helium ions to 500 MeV/nucleon in the case of 56Fe iron ions. The detectors were also irradiated at with 12C carbon ions, 20Ne neon and 28Si silicon beams.

"In the crystal plates placed perpendicularly to the ion beam, we observed practically point sources of light of a size on the border of the optical resolution of a microscope. These were the places where the high-energy ion pierced the crystal," says Prof. Bilski. "As part of the tests, some of the plates were also placed parallel to the beam. The probability of registering a track was then lower, but when it did happen, a long fragment of the track of the particle was 'imprinted' in the crystal."

The tests carried out confirm that lithium fluoride track detectors are ideal for recording the passage of heavy ions with high energies. In addition, it seems that these are not the only possibilities of LiF crystals. Every other atom in their interior is lithium, which interacts very well with neutrons. Lithium fluoride detectors, especially those enriched with the lithium 6Li isotope, will probably allow for very effective registration of low-energy neutrons, and there is much to indicate that also those of a higher energy.

If future studies confirm this assumption, it will be possible to construct personal neutron dosimeters. The small size of LiF crystals would also allow for interesting technical applications that are technologically inaccessible today. LiF track detectors could be used, for example, to study secondary particles formed around the primary proton beam produced by accelerators used in medicine to fight cancer.

Research Report: "Fluorescent imaging of heavy charged particle tracks with LiF single crystals"


Related Links
The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Physicists say they've discovered a new state of matter
Washington (UPI) Aug 15, 2019
Physicists at New York University claim they have uncovered a new state of matter that could boost the storage capacity of electronic devices and pave the way for the first generation of quantum computers. "Our research has succeeded in revealing experimental evidence for a new state of matter - topological superconductivity," Javad Shabani, an assistant professor of physics at New York University, said in a news release. "This new topological state can be manipulated in ways that could both s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
France's 42: start-up IT school tears up the rule book

India orders Russian equipment for first manned space mission

Solar sail craft could revolutionize space travel

Virgin Galactic unveils new Mission Control for space tourism

TIME AND SPACE
Secret Russia weapon project: gamechanger or PR stunt?

Bolton says Russia 'stole' US hypersonic technology

Chinese space startup to send heavy satellite

Vulcan Centaur rocket on schedule for first flight in 2021

TIME AND SPACE
Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

Robotic toolkit added to NASA's Mars 2020 Rover

NASA descends on Icelandic lava field to prepare for Mars

Methane not released by wind on Mars, experts find

TIME AND SPACE
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

TIME AND SPACE
ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

Embry-Riddle plans expansion of its Research Park through partnership with Space Square

OneWeb secures global spectrum further enabling global connectivity services

Companies partner to offer a complete solution for space missions as a service

TIME AND SPACE
Norway detects radioactive iodine near Russia

Ecuador city recycling plastic bottles for bus tickets

Radiation up to '16 times' the norm near Russia blast site

NASA awards Physical Optics Corporation additional $4M contract for Zero Gravity Optical Fibers

TIME AND SPACE
New "Gold Open Access" Planetary Science Journal Launched

How Many Earth-like Planets Are Around Sun-like Stars

NASA plans for Webb to zero in on TRAPPIST-1 atmospheres within a year of launch

Timeline suggests 'giant planet migration' was earlier than predicted

TIME AND SPACE
Young Jupiter was smacked head-on by massive newborn planet

Young Jupiter Was Smacked Head-On by Massive Newborn Planet

Hubble showcases new portrait of Jupiter

Jupiter's auroras powered by alternating current









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.